Do you want to publish a course? Click here

An SO(3)$times$SO(3) invariant solution of $D=11$ supergravity

138   0   0.0 ( 0 )
 Added by Krzysztof Pilch
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a new SO(3)$times$SO(3) invariant non-supersymmetric solution of the bosonic field equations of $D=11$ supergravity from the corresponding stationary point of maximal gauged $N=8$ supergravity by making use of the non-linear uplift formulae for the metric and the 3-form potential. The latter are crucial as this solution appears to be inaccessible to traditional techniques of solving Einsteins field equations, and is arguably the most complicated closed form solution of this type ever found. The solution is also a promising candidate for a stable non-supersymmetric solution of M-theory uplifted from gauged supergravity. The technique that we present here may be applied more generally to uplift other solutions of gauged supergravity.



rate research

Read More

112 - Zhao-Long Wang 2021
In the $SO(2,d)$ gauge theory formalism of AdS gravity established in arXiv:1811.05286, the dynamics of bulk gravity is emergent from the vanishing of the boundary covariant anomaly for the $SO(2,d)$ conservation law. Parallel with the known results of chiral anomalies, we establish the descendent structure of the holographic $SO(2,d)$ anomaly. The corresponding anomaly characteristic class, bulk Chern-Simons like action as well as the boundary effective action are constructed systematically. The anomalous conservation law is presented both in terms of the covariant and consistent formalisms. Due to the existence of the ruler field, not only the Bardeen-Zumino polynomial, but also the covariant and consistent currents are explicitly constructed.
We consider a covariant quantization of the D=11 massless superparticle in the supertwistor framework. D=11 supertwistors are highly constrained, but the interpretation of their bosonic components as Lorentz harmonic variables and their momenta permits to develop a classical and quantum mechanics without much difficulties. A simple, heuristic `twistor quantization of the superparticle leads to the linearized D=11 supergravity multiplet. In the process, we observe hints of a hidden SO(16) symmetry of D=11 supergravity.
In this paper we generalize the work of Lin, Lunin and Maldacena on the classification of 1/2-BPS M-theory solutions to a specific class of 1/4-BPS configurations. We are interested in the solutions of 11 dimensional supergravity with $SO(3)times SO(4)$ symmetry, and it is shown that such solutions are constructed over a one-parameter familiy of 4 dimensional almost Calabi-Yau spaces. Through analytic continuations we can obtain M-theory solutions having $AdS_2times S^3$ or $AdS_3times S^2$ factors. It is shown that our result is equivalent to the $AdS$ solutions which have been recently reported as the near-horizon geometry of M2 or M5-branes wrapped on 2 or 4-cycles in Calabi-Yau threefolds. We also discuss the hierarchy of M-theory bubbles with different number of supersymmetries.
$SO(5) times U(1) times SU(3)$ gauge-Higgs unification model inspired by $SO(11)$ gauge-Higgs grand unification is constructed in the Randall-Sundrum warped space. The 4D Higgs boson is identified with the Aharonov-Bohm phase in the fifth dimension. Fermion multiplets are introduced in the bulk in the spinor, vector and singlet representations of $SO(5)$ such that they are implemented in the spinor and vector representations of $SO(11)$. The mass spectrum of quarks and leptons in three generations is reproduced except for the down quark mass. The small neutrino masses are explained by the gauge-Higgs seesaw mechanism which takes the same form as in the inverse seesaw mechanism in grand unified theories in four dimensions.
In this paper we discuss how the Magueijo-Smolin Doubly Special Relativity proposal may obtained from a singular Lagrangian action. The deformed energy-momentum dispersion relation rises as a particular gauge, whose covariance imposes the non-linear Lorentz group action. Moreover, the additional invariant scale is present from the beginning as a coupling constant to a gauge auxiliary variable. The geometrical meaning of the gauge fixing procedure and its connection to the free relativistic particle are also described.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا