Do you want to publish a course? Click here

Minimum Scan Cover with Angular Transition Costs

143   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We provide a comprehensive study of a natural geometric optimization problem motivated by questions in the context of satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs (MSC), we are given a graph $G$ that is embedded in Euclidean space. The edges of $G$ need to be scanned, i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each other; changing the heading of a vertex takes some time proportional to the corresponding turn angle. Our goal is to minimize the time until all scans are completed, i.e., to compute a schedule of minimum makespan. We show that MSC is closely related to both graph coloring and the minimum (directed and undirected) cut cover problem; in particular, we show that the minimum scan time for instances in 1D and 2D lies in $Theta(log chi (G))$, while for 3D the minimum scan time is not upper bounded by $chi (G)$. We use this relationship to prove that the existence of a constant-factor approximation implies $P=NP$, even for one-dimensional instances. In 2D, we show that it is NP-hard to approximate a minimum scan cover within less than a factor of $frac{3}{2}$, even for bipartite graphs; conversely, we present a $frac{9}{2}$-approximation algorithm for this scenario. Generally, we give an $O(c)$-approximation for $k$-colored graphs with $kleq chi(G)^c$. For general metric cost functions, we provide approximation algorithms whose performance guarantee depend on the arboricity of the graph.



rate research

Read More

We consider a spectrum of geometric optimization problems motivated by contexts such as satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs, we are given a graph $G$ that is embedded in Euclidean space. The edges of $G$ need to be scanned, i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each other; changing the heading of a vertex incurs some cost in terms of energy or rotation time that is proportional to the corresponding rotation angle. Our goal is to compute schedules that minimize the following objective functions: (i) in Minimum Makespan Scan Cover (MSC-MS), this is the time until all edges are scanned; (ii) in Minimum Total Energy Scan Cover (MSC-TE), the sum of all rotation angles; (iii) in Minimum Bottleneck Energy Scan Cover (MSC-BE), the maximum total rotation angle at one vertex. Previous theoretical work on MSC-MS revealed a close connection to graph coloring and the cut cover problem, leading to hardness and approximability results. In this paper, we present polynomial-time algorithms for 1D instances of MSC-TE and MSC-BE, but NP-hardness proofs for bipartite 2D instances. For bipartite graphs in 2D, we also give 2-approximation algorithms for both MSC-TE and MSC-BE. Most importantly, we provide a comprehensive study of practical methods for all three problems. We compare three different mixed-integer programming and two constraint programming approaches, and show how to compute provably optimal solutions for geometric instances with up to 300 edges. Additionally, we compare the performance of different meta-heuristics for even larger instances.
A forbidden transition graph is a graph defined together with a set of permitted transitions i.e. unordered pair of adjacent edges that one may use consecutively in a walk in the graph. In this paper, we look for the smallest set of transitions needed to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
A measure for the visual complexity of a straight-line crossing-free drawing of a graph is the minimum number of lines needed to cover all vertices. For a given graph $G$, the minimum such number (over all drawings in dimension $d in {2,3}$) is called the emph{$d$-dimensional weak line cover number} and denoted by $pi^1_d(G)$. In 3D, the minimum number of emph{planes} needed to cover all vertices of~$G$ is denoted by $pi^2_3(G)$. When edges are also required to be covered, the corresponding numbers $rho^1_d(G)$ and $rho^2_3(G)$ are called the emph{(strong) line cover number} and the emph{(strong) plane cover number}. Computing any of these cover numbers -- except $pi^1_2(G)$ -- is known to be NP-hard. The complexity of computing $pi^1_2(G)$ was posed as an open problem by Chaplick et al. [WADS 2017]. We show that it is NP-hard to decide, for a given planar graph~$G$, whether $pi^1_2(G)=2$. We further show that the universal stacked triangulation of depth~$d$, $G_d$, has $pi^1_2(G_d)=d+1$. Concerning~3D, we show that any $n$-vertex graph~$G$ with $rho^2_3(G)=2$ has at most $5n-19$ edges, which is tight.
We consider the construction of a polygon $P$ with $n$ vertices whose turning angles at the vertices are given by a sequence $A=(alpha_0,ldots, alpha_{n-1})$, $alpha_iin (-pi,pi)$, for $iin{0,ldots, n-1}$. The problem of realizing $A$ by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an emph{angle graph}. In 2D, we characterize sequences $A$ for which every generic polygon $Psubset mathbb{R}^2$ realizing $A$ has at least $c$ crossings, for every $cin mathbb{N}$, and describe an efficient algorithm that constructs, for a given sequence $A$, a generic polygon $Psubset mathbb{R}^2$ that realizes $A$ with the minimum number of crossings. In 3D, we describe an efficient algorithm that tests whether a given sequence $A$ can be realized by a (not necessarily generic) polygon $Psubset mathbb{R}^3$, and for every realizable sequence the algorithm finds a realization.
In this paper, we consider the Minimum-Load $k$-Clustering/Facility Location (MLkC) problem where we are given a set $P$ of $n$ points in a metric space that we have to cluster and an integer $k$ that denotes the number of clusters. Additionally, we are given a set $F$ of cluster centers in the same metric space. The goal is to select a set $Csubseteq F$ of $k$ centers and assign each point in $P$ to a center in $C$, such that the maximum load over all centers is minimized. Here the load of a center is the sum of the distances between it and the points assigned to it. Although clustering/facility location problems have a rich literature, the minimum-load objective is not studied substantially, and hence MLkC has remained a poorly understood problem. More interestingly, the problem is notoriously hard even in some special cases including the one in line metrics as shown by Ahmadian et al. [ACM Trans. Algo. 2018]. They also show APX-hardness of the problem in the plane. On the other hand, the best-known approximation factor for MLkC is $O(k)$, even in the plane. In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al. [NeurIPS, 2017], which generalizes MLkC. Here the input points are colored by one of the $ell$ colors denoting the group they belong to. MLkC is the special case with $ell=1$. Considering this problem, we are able to obtain a $3$-approximation in $f(k,ell)cdot n^{O(1)}$ time. Also, our scheme leads to an improved $(1 + epsilon)$-approximation in case of Euclidean norm, and in this case, the running time depends only polynomially on the dimension $d$. Our results imply the same approximations for MLkC with running time $f(k)cdot n^{O(1)}$, achieving the first constant approximations for this problem in general and Euclidean metric spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا