Do you want to publish a course? Click here

Promoting High Diversity Ensemble Learning with EnsembleBench

187   0   0.0 ( 0 )
 Added by Yanzhao Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Ensemble learning is gaining renewed interests in recent years. This paper presents EnsembleBench, a holistic framework for evaluating and recommending high diversity and high accuracy ensembles. The design of EnsembleBench offers three novel features: (1) EnsembleBench introduces a set of quantitative metrics for assessing the quality of ensembles and for comparing alternative ensembles constructed for the same learning tasks. (2) EnsembleBench implements a suite of baseline diversity metrics and optimized diversity metrics for identifying and selecting ensembles with high diversity and high quality, making it an effective framework for benchmarking, evaluating and recommending high diversity model ensembles. (3) Four representative ensemble consensus methods are provided in the first release of EnsembleBench, enabling empirical study on the impact of consensus methods on ensemble accuracy. A comprehensive experimental evaluation on popular benchmark datasets demonstrates the utility and effectiveness of EnsembleBench for promoting high diversity ensembles and boosting the overall performance of selected ensembles.



rate research

Read More

314 - Tianyu Pang , Kun Xu , Chao Du 2019
Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness of individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.
In this paper, we propose a framework of filter-based ensemble of deep neuralnetworks (DNNs) to defend against adversarial attacks. The framework builds an ensemble of sub-models -- DNNs with differentiated preprocessing filters. From the theoretical perspective of DNN robustness, we argue that under the assumption of high quality of the filters, the weaker the correlations of the sensitivity of the filters are, the more robust the ensemble model tends to be, and this is corroborated by the experiments of transfer-based attacks. Correspondingly, we propose a principle that chooses the specific filters with smaller Pearson correlation coefficients, which ensures the diversity of the inputs received by DNNs, as well as the effectiveness of the entire framework against attacks. Our ensemble models are more robust than those constructed by previous defense methods like adversarial training, and even competitive with the classical ensemble of adversarial trained DNNs under adversarial attacks when the attacking radius is large.
Ensembles of models have been empirically shown to improve predictive performance and to yield robust measures of uncertainty. However, they are expensive in computation and memory. Therefore, recent research has focused on distilling ensembles into a single compact model, reducing the computational and memory burden of the ensemble while trying to preserve its predictive behavior. Most existing distillation formulations summarize the ensemble by capturing its average predictions. As a result, the diversity of the ensemble predictions, stemming from each member, is lost. Thus, the distilled model cannot provide a measure of uncertainty comparable to that of the original ensemble. To retain more faithfully the diversity of the ensemble, we propose a distillation method based on a single multi-headed neural network, which we refer to as Hydra. The shared body network learns a joint feature representation that enables each head to capture the predictive behavior of each ensemble member. We demonstrate that with a slight increase in parameter count, Hydra improves distillation performance on classification and regression settings while capturing the uncertainty behavior of the original ensemble over both in-domain and out-of-distribution tasks.
Predicting multiple heterogeneous biological and medical targets is a challenge for traditional deep learning models. In contrast to single-task learning, in which a separate model is trained for each target, multi-task learning (MTL) optimizes a single model to predict multiple related targets simultaneously. To address this challenge, we propose the Multi-gate Mixture-of-Experts with Exclusivity (MMoEEx). Our work aims to tackle the heterogeneous MTL setting, in which the same model optimizes multiple tasks with different characteristics. Such a scenario can overwhelm current MTL approaches due to the challenges in balancing shared and task-specific representations and the need to optimize tasks with competing optimization paths. Our method makes two key contributions: first, we introduce an approach to induce more diversity among experts, thus creating representations more suitable for highly imbalanced and heterogenous MTL learning; second, we adopt a two-step optimization [6, 11] approach to balancing the tasks at the gradient level. We validate our method on three MTL benchmark datasets, including Medical Information Mart for Intensive Care (MIMIC-III) and PubChem BioAssay (PCBA).
Extracting actionable intelligence from distributed, heterogeneous, correlated and high-dimensional data sources requires run-time processing and learning both locally and globally. In the last decade, a large number of meta-learning techniques have been proposed in which local learners make online predictions based on their locally-collected data instances, and feed these predictions to an ensemble learner, which fuses them and issues a global prediction. However, most of these works do not provide performance guarantees or, when they do, these guarantees are asymptotic. None of these existing works provide confidence estimates about the issued predictions or rate of learning guarantees for the ensemble learner. In this paper, we provide a systematic ensemble learning method called Hedged Bandits, which comes with both long run (asymptotic) and short run (rate of learning) performance guarantees. Moreover, our approach yields performance guarantees with respect to the optimal local prediction strategy, and is also able to adapt its predictions in a data-driven manner. We illustrate the performance of Hedged Bandits in the context of medical informatics and show that it outperforms numerous online and offline ensemble learning methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا