No Arabic abstract
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern. We employ Quantum Fisher Information, as a figure of merit, to quantify extractable information about an unknown parameter encoded within the Quantum Walk evolution. Although the approach is universal, we focus on the coherent static and dynamic disorder to investigate anomalous and classical transport as well as Anderson localization. Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks, both classical and quantum.
Symmetrically evolving discrete quantum walk results in dynamic localization with zero mean displacement when the standard evolution operations are replaced by a temporal disorder evolution operation. In this work we show that the quantum ratchet action, that is, a directed transport in standard or disordered discrete-time quantum walk can be realized by introducing a pawl like effect realized by using a fixed coin operation at marked positions that is, different from the ones used for evolution at other positions. We also show that the combination of standard and disordered evolution operations can be optimized to get the mean displacement of order $propto$ t (number of walk steps). This model of quantum ratchet in quantum walk is defined using only a set of entangling unitary operators resulting in the coherent quantum transport.
One-dimensional discrete-time quantum walk has played an important role in development of quantum algorithms and protocols for different quantum simulations. The speedup observed in quantum walk algorithms is attributed to quantum interference and coherence of the wave packet in position space. Similarly, localization in quantum walk due to disorder is also attributed to quantum interference effect. Therefore, it is intriguing to have a closer look and understand the way quantum interference manifests in different forms of quantum walk dynamics. Quantum coherence in the system is responsible for quantum interference in the system. Here we will use coherence measure to quantify the interference in the discrete-time quantum walk. We show coherence in the position and coin space, together and independently, and present the contribution of coherence to the quantum interference in the system. This study helps us to differentiate the localization seen in one dimensional discrete-time quantum walks due to different forms of disorders and topological effects.
Quantum chaotic interacting $N$-particle systems are assumed to show fast and irreversible spreading of quantum information on short (Ehrenfest) time scales $sim!log N$. Here we show that, near criticality, certain many-body systems exhibit fast initial scrambling, followed subsequently by oscillatory behavior between reentrant localization and delocalization of information in Hilbert space. We consider both integrable and nonintegrable quantum critical bosonic systems with attractive contact interaction that exhibit locally unstable dynamics in the corresponding many-body phase space of the large-$N$ limit. Semiclassical quantization of the latter accounts for many-body correlations in excellent agreement with simulations. Most notably, it predicts an asymptotically constant local level spacing $hbar/tau$, again given by $tau! sim! log N$. This unique timescale governs the long-time behavior of out-of-time-order correlators that feature quasi-periodic recurrences indicating reversibility.
Numerical methods for the 1-D Dirac equation based on operator splitting and on the quantum lattice Boltzmann (QLB) schemes are reviewed. It is shown that these discretizations fall within the class of quantum walks, i.e. discrete maps for complex fields, whose continuum limit delivers Dirac-like relativistic quantum wave equations. The correspondence between the quantum walk dynamics and these numerical schemes is given explicitly, allowing a connection between quantum computations, numerical analysis and lattice Boltzmann methods. The QLB method is then extended to the Dirac equation in curved spaces and it is demonstrated that the quantum walk structure is preserved. Finally, it is argued that the existence of this link between the discretized Dirac equation and quantum walks may be employed to simulate relativistic quantum dynamics on quantum computers.
The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk, which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a quantum stochastic walk can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of quantum stochastic walks that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of quantum stochastic walks, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of quantum stochastic walks on large graphs with existing quantum technologies.