No Arabic abstract
Symmetrically evolving discrete quantum walk results in dynamic localization with zero mean displacement when the standard evolution operations are replaced by a temporal disorder evolution operation. In this work we show that the quantum ratchet action, that is, a directed transport in standard or disordered discrete-time quantum walk can be realized by introducing a pawl like effect realized by using a fixed coin operation at marked positions that is, different from the ones used for evolution at other positions. We also show that the combination of standard and disordered evolution operations can be optimized to get the mean displacement of order $propto$ t (number of walk steps). This model of quantum ratchet in quantum walk is defined using only a set of entangling unitary operators resulting in the coherent quantum transport.
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern. We employ Quantum Fisher Information, as a figure of merit, to quantify extractable information about an unknown parameter encoded within the Quantum Walk evolution. Although the approach is universal, we focus on the coherent static and dynamic disorder to investigate anomalous and classical transport as well as Anderson localization. Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks, both classical and quantum.
One-dimensional discrete-time quantum walk has played an important role in development of quantum algorithms and protocols for different quantum simulations. The speedup observed in quantum walk algorithms is attributed to quantum interference and coherence of the wave packet in position space. Similarly, localization in quantum walk due to disorder is also attributed to quantum interference effect. Therefore, it is intriguing to have a closer look and understand the way quantum interference manifests in different forms of quantum walk dynamics. Quantum coherence in the system is responsible for quantum interference in the system. Here we will use coherence measure to quantify the interference in the discrete-time quantum walk. We show coherence in the position and coin space, together and independently, and present the contribution of coherence to the quantum interference in the system. This study helps us to differentiate the localization seen in one dimensional discrete-time quantum walks due to different forms of disorders and topological effects.
We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi- ports can connect not to their nearest neighbor but to another multi-port at a fixed distance - we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discrete distribution modulated by additional (exponential) peaks for long times. Finally, our numerical results indicate that by an appropriate mapping an universal functional behavior of the variance of the long-time probability distribution can be revealed with respect to the scaled average of jump size.
We study the percolation of a quantum particle on quasicrystal lattices and compare it with the square lattice. For our study, we have considered quasicrystal lattices modelled on the pentagonally symmetric Penrose tiling and the octagonally symmetric Ammann-Beenker tiling. The dynamics of the quantum particle is modelled using continuous-time quantum walk (CTQW) formalism. We present a comparison of the behaviour of the CTQW on the two aperiodic quasicrystal lattices and the square lattice when all the vertices are connected and when disorder is introduced in the form of disconnections between the vertices. Unlike on a square lattice, we see a significant fraction of quantum state localised around the origin in quasicrystal lattice. With increase in disorder, the percolation probability of a particle on a quasicrystal lattice decreases significantly faster when compared to the square lattice. This study sheds light on the minimum fraction of disconnections allowed to see percolation of quantum particle on these quasicrystal lattices.
Numerical methods for the 1-D Dirac equation based on operator splitting and on the quantum lattice Boltzmann (QLB) schemes are reviewed. It is shown that these discretizations fall within the class of quantum walks, i.e. discrete maps for complex fields, whose continuum limit delivers Dirac-like relativistic quantum wave equations. The correspondence between the quantum walk dynamics and these numerical schemes is given explicitly, allowing a connection between quantum computations, numerical analysis and lattice Boltzmann methods. The QLB method is then extended to the Dirac equation in curved spaces and it is demonstrated that the quantum walk structure is preserved. Finally, it is argued that the existence of this link between the discretized Dirac equation and quantum walks may be employed to simulate relativistic quantum dynamics on quantum computers.