Do you want to publish a course? Click here

Reversible quantum information spreading in many-body systems near criticality

168   0   0.0 ( 0 )
 Added by Quirin Hummel
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum chaotic interacting $N$-particle systems are assumed to show fast and irreversible spreading of quantum information on short (Ehrenfest) time scales $sim!log N$. Here we show that, near criticality, certain many-body systems exhibit fast initial scrambling, followed subsequently by oscillatory behavior between reentrant localization and delocalization of information in Hilbert space. We consider both integrable and nonintegrable quantum critical bosonic systems with attractive contact interaction that exhibit locally unstable dynamics in the corresponding many-body phase space of the large-$N$ limit. Semiclassical quantization of the latter accounts for many-body correlations in excellent agreement with simulations. Most notably, it predicts an asymptotically constant local level spacing $hbar/tau$, again given by $tau! sim! log N$. This unique timescale governs the long-time behavior of out-of-time-order correlators that feature quasi-periodic recurrences indicating reversibility.



rate research

Read More

182 - Eiki Iyoda , , Takahiro Sagawa 2017
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) that becomes negative when quantum information is delocalized. We clarify that scrambling is an independent property of integrability of Hamiltonians; TMI can be negative or positive for both integrable and non-integrable systems. This implies that scrambling is a separate concept from conventional quantum chaos characterized by non-integrability. Furthermore, we calculate TMI in disordered systems such as many-body localized (MBL) systems and the Sachdev-Ye-Kitaev (SYK) model. We find that scrambling occurs but is slow in a MBL phase, while disorder in the SYK model does not make scrambling slower but makes it smoother.
311 - J. Eisert , M. Friesdorf , 2014
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduce the notion of many-body quantum scars which reflect the existence of a subset of special many-body eigenstates concentrated in certain parts of the Hilbert space. We demonstrate the existence of scars in the Fibonacci chain -- the one- dimensional model with a constrained local Hilbert space realized in the 51 Rydberg atom quantum simulator [H. Bernien et al., arXiv:1707.04344]. The quantum scarred eigenstates are embedded throughout the thermalizing many-body spectrum, but surprisingly lead to direct experimental signatures such as robust oscillations following a quench from a charge-density wave state found in experiment. We develop a model based on a single particle hopping on the Hilbert space graph, which quantitatively captures the scarred wave functions up to large systems of L = 32 atoms. Our results suggest that scarred many-body bands give rise to a new universality class of quantum dynamics, which opens up opportunities for creating and manipulating novel states with long-lived coherence in systems that are now amenable to experimental study.
Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simulate quantum systems consisting of many particles, a very demanding computational task. In this paper, we present a novel ab-initio approach to solve the many-body problem for bosonic systems by evolving a system of one-particle wavefunctions representing pilot waves that guide the Bohmian trajectories of the quantum particles. In this approach, quantum entanglement effects arise due to the interactions between different configurations of Bohmian particles evolving simultaneously. The method is used to study the breathing dynamics and ground state properties in a system of interacting bosons.
In statistical mechanics, a small system exchanges conserved quantities---heat, particles, electric charge, etc.---with a bath. The small system thermalizes to the canonical ensemble, or the grand canonical ensemble, etc., depending on the conserved quantities. The conserved quantities are represented by operators usually assumed to commute with each other. This assumption was removed within quantum-information-theoretic (QI-theoretic) thermodynamics recently. The small systems long-time state was dubbed ``the non-Abelian thermal state (NATS). We propose an experimental protocol for observing a system thermalize to the NATS. We illustrate with a chain of spins, a subset of which form the system of interest. The conserved quantities manifest as spin components. Heisenberg interactions push the conserved quantities between the system and the effective bath, the rest of the chain. We predict long-time expectation values, extending the NATS theory from abstract idealization to finite systems that thermalize with finite couplings for finite times. Numerical simulations support the analytics: The system thermalizes to the NATS, rather than to the canonical prediction. Our proposal can be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and perhaps nuclear magnetic resonance. This work introduces noncommuting conserved quantities from QI-theoretic thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and condensed matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا