No Arabic abstract
We show that Weyl Fermi arcs are generically accompanied by a divergence of the surface Berry curvature scaling as $1/k^2$, where $k$ is the distance to a hot-line in the surface Brillouin zone that connects the projection of Weyl nodes with opposite chirality but which is distinct from the Fermi arc itself. Such surface Berry curvature appears whenever the bulk Weyl dispersion has a velocity tilt toward the surface of interest. This divergence is reflected in a variety of Berry curvature mediated effects that are readily accessible experimentally, and in particular leads to a surface Berry curvature dipole that grows linearly with the thickness of a slab of a Weyl semimetal material in the limit of long lifetime of surface states. This implies the emergence of a gigantic contribution to the non-linear Hall effect in such devices.
The Fermi arcs of topological surface states in the three-dimensional multi-Weyl semimetals on surfaces by a continuum model are investigated systematically. We calculated analytically the energy spectra and wave function for bulk quadratic- and cubic-Weyl semimetal with a single Weyl point. The Fermi arcs of topological surface states in Weyl semimetals with single- and double-pair Weyl points are investigated systematically. The evolution of the Fermi arcs of surface states variating with the boundary parameter is investigated and the topological Lifshitz phase transition of the Fermi arc connection is clearly demonstrated. Besides, the boundary condition for the double parallel flat boundary of Weyl semimetal is deduced with a Lagrangian formalism.
Three dimensional Weyl semimetals exhibit open Fermi arcs on their sample surfaces connecting the projection of bulk Weyl points of opposite chirality. The canonical interpretation of these surfaces states is in terms of chiral edge modes of a layer quantum Hall effect: The two-dimensional momentum-space planes perpendicular to the momentum connecting the two Weyl points are characterized by a non-zero Chern number. It might be interesting to note, that in analogy to the known two-dimensional Floquet anomalous chiral edge states, one can realize open Fermi arcs in the absence of Chern numbers in periodically driven system. Here, we present a way to construct such anomalous Fermi arcs in a concrete model.
Topological Weyl semimetals (WSMs) have been predicted to be excellent candidates for detecting Berry curvature dipole (BCD) and the related non-linear effects in electronics and optics due to the large Berry curvature concentrated around the Weyl nodes. And yet, linearized models of isolated tilted Weyl cones only realize a diagonal non-zero BCD tensor which sum to zero in the model of WSM with multiple Weyl nodes in the presence of mirror symmetry. On the other hand, recent textit{ab initio} work has found that realistic WSMs like TaAs-type or MoTe$_2$-type compounds, which have mirror symmetry, indeed show an off-diagonal BCD tensor with an enhanced magnitude for its non-zero components. So far, there is a lack of theoretical work addressing this contradiction for 3D WSMs. In this paper, we systematically study the BCD in 3D WSMs using lattice Weyl Hamiltonians, which go beyond the linearized models. We find that the non-zero BCD and its related important features for these WSMs do not rely on the contribution from the Weyl nodes. Instead, they are dependent on the part of the Fermi surface that lies textit{between} the Weyl nodes, in the region of the reciprocal space where neighboring Weyl cones overlap. For large enough chemical potential such Fermi surfaces are present in the lattice Weyl Hamiltonians as well as in the realistic WSMs. We also show that, a lattice Weyl Hamitonian with a non-zero chiral chemical potential for the Weyl cones can also support dips or peaks in the off-diagonal components of the BCD tensor near the Weyl nodes themselves, consistent with recent textit{ab initio} work.
It is well known that on the surface of Weyl semimetals, Fermi arcs appear as the topologically protected surface states. In this work, we give a semiclassical explanation for the morphology of the surface Fermi arcs. Viewing the surface states as a two-dimensional Fermi gas subject to band bending and Berry curvatures, we show that it is the non-parallelism between the velocity and the momentum that gives rise to the spiraling Fermi arcs. We map out the Fermi arcs from the velocity field for a single Weyl point and a lattice with two Weyl points. We also investigate the surface magnetoplasma of Dirac semimetals in a magnetic field. In this case, the surface states obtains chiral nature from both drift motion and the chiral magnetic effect, resulting in Fermi arcs. We also discuss the important role played by the Imbert-Fedorov shift in the formation of surface Fermi arcs.
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.