Do you want to publish a course? Click here

Surface Fermi arcs in Weyl semimetals: a semiclassical point of view

279   0   0.0 ( 0 )
 Added by Luyang Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known that on the surface of Weyl semimetals, Fermi arcs appear as the topologically protected surface states. In this work, we give a semiclassical explanation for the morphology of the surface Fermi arcs. Viewing the surface states as a two-dimensional Fermi gas subject to band bending and Berry curvatures, we show that it is the non-parallelism between the velocity and the momentum that gives rise to the spiraling Fermi arcs. We map out the Fermi arcs from the velocity field for a single Weyl point and a lattice with two Weyl points. We also investigate the surface magnetoplasma of Dirac semimetals in a magnetic field. In this case, the surface states obtains chiral nature from both drift motion and the chiral magnetic effect, resulting in Fermi arcs. We also discuss the important role played by the Imbert-Fedorov shift in the formation of surface Fermi arcs.



rate research

Read More

95 - Y. C. Liu , V. Wang , J. B. Lin 2021
The Fermi arcs of topological surface states in the three-dimensional multi-Weyl semimetals on surfaces by a continuum model are investigated systematically. We calculated analytically the energy spectra and wave function for bulk quadratic- and cubic-Weyl semimetal with a single Weyl point. The Fermi arcs of topological surface states in Weyl semimetals with single- and double-pair Weyl points are investigated systematically. The evolution of the Fermi arcs of surface states variating with the boundary parameter is investigated and the topological Lifshitz phase transition of the Fermi arc connection is clearly demonstrated. Besides, the boundary condition for the double parallel flat boundary of Weyl semimetal is deduced with a Lagrangian formalism.
The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly interacting systems, namely, Luttinger arcs, defined as zeros of the electron Greens function. The Luttinger arcs connect surface projections of Weyl nodes of opposite chirality and form closed loops with the Fermi arcs when the Weyl nodes are undoped. Upon doping, the ends of the Fermi and Luttinger arcs separate and the intervening regions get filled by surface projections of bulk Fermi surfaces. For bilayered Weyl semimetals, we prove two remarkable implications: (i) the precise shape of the Luttinger arcs can be determined experimentally by removing a surface layer. We use this principle to sketch the Luttinger arcs for Co and Sn terminations in Co$_{3}$Sn$_{2}$S$_{2}$; (ii) the area enclosed by the Fermi and Luttinger arcs equals the surface particle density to zeroth order in the interlayer couplings. We argue that the approximate equivalence survives interactions that are weak enough to leave the system in the Weyl limit, and term this phenomenon weak Luttingers theorem.
262 - N. Xu , G. Autes , C. E. Matt 2017
The Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principle calculations, on transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two non-trivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (e.g. NbP), topological Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magneto-transport properties observed in TaAs, TaP and NbP, where the Fermi arc states are similar.
Weyl semimetals exhibit exotic Fermi-arc surface states, which strongly affect their electromagnetic properties. We derive analytical expressions for all components of the composite density-spin response tensor for the surfaces states of a Weyl-semimetal model obtained by closing the band gap in a topological insulating state and introducing a time-reversal-symmetry-breaking term. Based on the results, we discuss the electromagnetic susceptibilities, the current response, and other physical effects arising from the density-spin response. We find a magnetoelectric effect caused solely by the Fermi arcs. We also discuss the effect of electron-electron interactions within the random phase approximation and investigate the dispersion of surface plasmons formed by Fermi-arc states. Our work is useful for understanding the electromagnetic and optical properties of the Fermi arcs.
We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculations on a lattice model exhibiting Weyl Fermi-arcs. We find that the Fermi-arc surface states, in addition to having a finite lifetime from disorder broadening, hybridize with nonperturbative bulk rare states making them no longer bound to the surface (i.e. they lose their purely surface spectral character). Thus, we provide strong numerical evidence that the Weyl Fermi-arcs are not topologically protected from disorder. Nonetheless, the surface chiral velocity is robust and survives in the presence of strong disorder, persisting all the way to the Anderson-localized phase by forming localized current loops that live within the localization length of the surface. Thus, the Weyl semimetal is not topologically robust to the presence of disorder, but the surface chiral velocity is.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا