No Arabic abstract
We survey the electron heat flux observed by the Parker Solar Probe (PSP) in the near-Sun environment at heliocentric distances of 0.125-0.25 AU. We utilized measurements from the Solar Wind Electrons Alphas and Protons and FIELDS experiments to compute the solar wind electron heat flux and its components and to place these in context. The PSP observations reveal a number of trends in the electron heat flux signatures near the Sun. The magnitude of the heat flux is anticorrelated with solar wind speed, likely as a result of the lower saturation heat flux in the higher-speed wind. When divided by the saturation heat flux, the resulting normalized net heat flux is anticorrelated with plasma beta on all PSP orbits, which is consistent with the operation of collisionless heat flux regulation mechanisms. The net heat flux also decreases in very high beta regions in the vicinity of the heliospheric current sheet, but in most cases of this type the omnidirectional suprathermal electron flux remains at a comparable level or even increases, seemingly inconsistent with disconnection from the Sun. The measured heat flux values appear inconsistent with regulation primarily by collisional mechanisms near the Sun. Instead, the observed heat flux dependence on plasma beta and the distribution of suprathermal electron parameters are both consistent with theoretical instability thresholds associated with oblique whistler and magnetosonic modes.
Studying the evolution of magnetic clouds entrained in coronal mass ejections using in-situ data is a difficult task since only a limited number of observational points is available at large heliocentric distances. Remote sensing observations can, however, provide important information for events close to the Sun. In this work we estimate the flux rope orientation first in the close vicinity of the Sun (2-20 Rs) using forward modeling of STEREO/SECCHI and SOHO/LASCO coronagraph images of coronal mass ejections and then in-situ using Grad-Shafranov reconstruction of the magnetic cloud. Thus, we are able to measure changes in the orientation of the erupted flux ropes as they propagate from the Sun to 1 AU. We present both techniques and use them to study 15 magnetic clouds observed during the minimum following Solar Cycle 23 and the rise of Solar Cycle 24. This is the first multievent study to compare the three-dimensional parameters of CMEs from imaging and in-situ reconstructions. The results of our analysis confirm earlier studies showing that the flux ropes tend to deflect towards the solar equatorial plane. We also find evidence of rotation on their travel from the Sun to 1 AU. In contrast to past studies, our method allows one to deduce the evolution of the three-dimensional orientation of individual flux ropes rather than on a statistical basis.
Heat flux suppression in collisionless plasmas for a large range of plasma $beta$ is explored using two-dimensional particle-in-cell simulations with a strong, sustained thermal gradient. We find that a transition takes place between whistler-dominated (high-$beta$) and double-layer-dominated (low-$beta$) heat flux suppression. Whistlers saturate at small amplitude in the low beta limit and are unable to effectively suppress the heat flux. Electrostatic double layers suppress the heat flux to a mostly constant factor of the free streaming value once this transition happens. The double layer physics is an example of ion-electron coupling and occurs on a scale of roughly the electron Debye length. The scaling of ion heating associated with the various heat flux driven instabilities is explored over the full range of $beta$ explored. The range of plasma-$beta$s studied in this work makes it relevant to the dynamics of a large variety of astrophysical plasmas, including the intracluster medium of galaxy clusters, hot accretion flows, stellar and accretion disk coronae, and the solar wind.
The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after Parker Solar Probe observations during its first perihelion at 0.166 au, consisting of a dense core and an anti-sunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drives the solar wind into successive regimes where whistler heat flux instabilities are triggered. These instabilities produce sunward whistler waves initially characterized by predominantly oblique propagation with respect to the interplanetary magnetic field. The excited waves interact with the electrons via resonant scattering processes. As a consequence, the strahl pitch angle distribution broadens and its drift velocity reduces. Strahl electrons are scattered in the direction perpendicular to the magnetic field, and an electron halo is formed. At a later stage, resonant electron firehose instability is triggered and further affects the electron temperature anisotropy as the solar wind expands. Wave-particle interaction processes are accompanied by a substantial reduction of the solar wind heat flux. The simulated whistler waves are in qualitative agreement with observations in terms of wave frequencies, amplitudes and propagation angles. Our work proposes an explanation for the observations of oblique and parallel whistler waves in the solar wind. We conclude that solar wind expansion has to be factored in when trying to explain kinetic processes at different heliocentric distances.
A three-dimensional (3-D), self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) the photoelectron density at the surface of the spacecraft greatly exceeds the ambient plasma density, (2) the spacecraft size is significantly larger than local Debye length of the photoelectrons, and (3) the thermal electron energy is much larger than the characteristic energy of the escaping photoelectrons. All of these conditions are present near the Sun. The numerical solutions also show that the spacecrafts negative potential can be amplified by an ion wake. The negative potential of the ion wake prevents secondary electrons from escaping the part of spacecraft in contact with the wake. These findings may be important for future spacecraft missions that go nearer to the Sun, such as Solar Orbiter and Solar Probe Plus.
UV bursts and Ellerman bombs are transient brightenings observed in the low solar atmospheres of emerging flux regions. Observations have discovered the cospatial and cotemporal EBs and UV bursts, and their formation mechanisms are still not clear. The multi-thermal components with a large temperature span in these events challenge our understanding of magnetic reconnection and heating mechanisms in the low solar atmosphere. We have studied magnetic reconnection between the emerging and background magnetic fields. The initial plasma parameters are based on the C7 atmosphere model. After the current sheet with dense photosphere plasma is emerged to $0.5$ Mm above the solar surface, plasmoid instability appears. The plasmoids collide and coalesce with each other, which makes the plasmas with different densities and temperatures mixed up in the turbulent reconnection region. Therefore, the hot plasmas corresponding to the UV emissions and colder plasmas corresponding to the emissions from other wavelenghts can move together and occur at about the same height. In the meantime, the hot turbulent structures basically concentrate above $0.4$ Mm, whereas the cool plasmas extend to much lower heights to the bottom of the current sheet. These phenomena are consistent with the observations of Chen et al. 2019, ApJL. The synthesized Si IV line profiles are similar to the observed one in UV bursts, the enhanced wing of the line profiles can extend to about $100$ km s$^{-1}$. The differences are significant among the numerical results with different resolutions, which indicate that the realistic magnetic diffusivity is crucial to reveal the fine structures and realistic plasmas heating in these reconnection events. Our results also show that the reconnection heating contributed by ambipolar diffusion in the low chromosphere around the temperature minimum region is not efficient.