No Arabic abstract
The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after Parker Solar Probe observations during its first perihelion at 0.166 au, consisting of a dense core and an anti-sunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drives the solar wind into successive regimes where whistler heat flux instabilities are triggered. These instabilities produce sunward whistler waves initially characterized by predominantly oblique propagation with respect to the interplanetary magnetic field. The excited waves interact with the electrons via resonant scattering processes. As a consequence, the strahl pitch angle distribution broadens and its drift velocity reduces. Strahl electrons are scattered in the direction perpendicular to the magnetic field, and an electron halo is formed. At a later stage, resonant electron firehose instability is triggered and further affects the electron temperature anisotropy as the solar wind expands. Wave-particle interaction processes are accompanied by a substantial reduction of the solar wind heat flux. The simulated whistler waves are in qualitative agreement with observations in terms of wave frequencies, amplitudes and propagation angles. Our work proposes an explanation for the observations of oblique and parallel whistler waves in the solar wind. We conclude that solar wind expansion has to be factored in when trying to explain kinetic processes at different heliocentric distances.
The first two orbits of the Parker Solar Probe (PSP) spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 Rs). Here, we present an analysis of this data to study solar wind turbulence at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include: increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of the velocity and both Elsasser fields, a lower magnetic compressibility consistent with a smaller slow-mode kinetic energy fraction, and a much smaller outer scale that has had time for substantial nonlinear processing. There is also an overall increase in the dominance of outward-propagating Alfvenic fluctuations compared to inward-propagating ones, and the radial variation of the inward component is consistent with its generation by reflection from the large-scale gradient in Alfven speed. The energy flux in this turbulence at 0.17 au was found to be ~10% of that in the bulk solar wind kinetic energy, becoming ~40% when extrapolated to the Alfven point, and both the fraction and rate of increase of this flux towards the Sun is consistent with turbulence-driven models in which the solar wind is powered by this flux.
We present results of two-dimensional fully kinetic Particle-In-Cell simulation in order to shed light on the role of whistler waves in the scattering of strahl electrons and in the heat flux regulation in the solar wind. We model the electron velocity distribution function as initially composed of core and strahl populations as typically encountered in the near-Sun solar wind as observed by Parker Solar Probe. We demonstrate that, as a consequence of the evolution of the electron velocity distribution function, two branches of the whistler heat flux instability can be excited, which can drive whistler waves propagating in the direction oblique or parallel to the background magnetic field. First, oblique whistler waves induce pitch-angle scattering of strahl electrons, towards higher perpendicular velocities. This leads to the broadening of the strahl pitch angle distribution and hence to the formation of a halo-like population at the expense of the strahl. Later on, the electron velocity distribution function experiences the effect of parallel whistler waves, which contributes to the redistribution of the particles scattered in the perpendicular direction into a more symmetric halo, in agreement with observations. Simulation results show a remarkable agreement with the linear theory of the oblique whistler heat flux instability. The process is accompanied by a significant decrease of the heat flux carried by the strahl population.
A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfven-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflection-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ($P_{rm AWb}$) that is transferred to solar-wind particles via heating between the coronal base and heliocentric distance $r$, which we denote $chi_{rm H}(r)$, and the fraction that is transferred via work, which we denote $chi_{rm W}(r)$. We find that $chi_{rm W}(r_{rm A})$ ranges from 0.15 to 0.3, where $r_{rm A}$ is the Alfven critical point. This value is small compared to~one because the Alfven speed $v_{rm A} $ exceeds the outflow velocity $U$ at $r<r_{rm A}$, so the AWs race through the plasma without doing much work. At $r>r_{rm A}$, where $v_{rm A} < U$, the AWs are in an approximate sense stuck to the plasma, which helps them do pressure work as the plasma expands. However, much of the AW power has dissipated by the time the AWs reach $r=r_{rm A}$, so the total rate at which AWs do work on the plasma at $r>r_{rm A}$ is a modest fraction of $P_{rm AWb}$. We find that heating is more effective than work at $r<r_{rm A}$, with $chi_{rm H}(r_{rm A})$ ranging from 0.5 to 0.7. The reason that $chi_{rm H} geq 0.5$ in our simulations is that an appreciable fraction of the local AW power dissipates within each Alfven-speed scale height in RDAWT, and there are a few Alfven-speed scale heights between the coronal base and $r_{rm A}$.
The evolution of the electron heat flux in the solar wind is regulated by the interplay between several effects: solar wind expansion, that can potentially drive velocity-space instabilties, turbulence and wave-particle interactions, and, possibly, collisions. Here we address the respective role played by the solar wind expansion and the electron firehose instability, developing in the presence of multiple electron populations, in regulating the heat flux. We carry out fully kinetic, Expanding Box Model simulations and separately analyze the enthalpy, bulk and velocity distribution function skewness contributions for each of the electron species. We observe that the key factor determining electron energy flux evolution is the reduction of the drift velocity of the electron populations in the rest frame of the solar wind. In our simulations, redistribution of the electron thermal energy from the parallel to the perpendicular direction after the onset of the electron firehose instability is observed. However, this process seems to impact energy flux evolution only minimally. Hence, reduction of the electron species drift velocity in the solar wind frame appears to directly correlate with efficiency for heat flux instabilities
We analyze magnetic field data from the first six encounters of PSP, three Helios fast streams and two Ulysses south polar passes covering heliocentric distances $0.1lesssim Rlesssim 3$ au. We use this data set to statistically determine the evolution of switchbacks of different periods and amplitudes with distance from the Sun. We compare the radial evolution of magnetic field variances with that of the mean square amplitudes of switchbacks, and quantify the radial evolution of the cumulative counts of switchbacks per km. We find that the amplitudes of switchbacks decrease faster than the overall turbulent fluctuations, in a way consistent with the radial decrease of the mean magnetic field. This could be the result of a saturation of amplitudes and may be a signature of decay processes of large amplitude Alfvenic fluctuations in the solar wind. We find that the evolution of switchback occurrence in the solar wind is scale-dependent: the fraction of longer duration switchbacks increases with radial distance whereas it decreases for shorter switchbacks. This implies that switchback dynamics is a complex process involving both decay and in-situ generation in the inner heliosphere. We confirm that switchbacks can be generated by the expansion although other type of switchbacks generated closer to the sun cannot be ruled out.