Do you want to publish a course? Click here

Wave generation and heat flux suppression in astrophysical plasma systems

122   0   0.0 ( 0 )
 Added by Gareth Roberg-Clark
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Heat flux suppression in collisionless plasmas for a large range of plasma $beta$ is explored using two-dimensional particle-in-cell simulations with a strong, sustained thermal gradient. We find that a transition takes place between whistler-dominated (high-$beta$) and double-layer-dominated (low-$beta$) heat flux suppression. Whistlers saturate at small amplitude in the low beta limit and are unable to effectively suppress the heat flux. Electrostatic double layers suppress the heat flux to a mostly constant factor of the free streaming value once this transition happens. The double layer physics is an example of ion-electron coupling and occurs on a scale of roughly the electron Debye length. The scaling of ion heating associated with the various heat flux driven instabilities is explored over the full range of $beta$ explored. The range of plasma-$beta$s studied in this work makes it relevant to the dynamics of a large variety of astrophysical plasmas, including the intracluster medium of galaxy clusters, hot accretion flows, stellar and accretion disk coronae, and the solar wind.



rate research

Read More

We survey the electron heat flux observed by the Parker Solar Probe (PSP) in the near-Sun environment at heliocentric distances of 0.125-0.25 AU. We utilized measurements from the Solar Wind Electrons Alphas and Protons and FIELDS experiments to compute the solar wind electron heat flux and its components and to place these in context. The PSP observations reveal a number of trends in the electron heat flux signatures near the Sun. The magnitude of the heat flux is anticorrelated with solar wind speed, likely as a result of the lower saturation heat flux in the higher-speed wind. When divided by the saturation heat flux, the resulting normalized net heat flux is anticorrelated with plasma beta on all PSP orbits, which is consistent with the operation of collisionless heat flux regulation mechanisms. The net heat flux also decreases in very high beta regions in the vicinity of the heliospheric current sheet, but in most cases of this type the omnidirectional suprathermal electron flux remains at a comparable level or even increases, seemingly inconsistent with disconnection from the Sun. The measured heat flux values appear inconsistent with regulation primarily by collisional mechanisms near the Sun. Instead, the observed heat flux dependence on plasma beta and the distribution of suprathermal electron parameters are both consistent with theoretical instability thresholds associated with oblique whistler and magnetosonic modes.
The constraint imposed by magnetic helicity conservation on the alpha effect is considered for both magnetically and flow dominated self-organizing plasmas. Direct numerical simulations are presented for a dominant contribution to the alpha effect, which can be cast in the functional form of a total divergence of an averaged helicity flux, called the helicity-flux-driven alpha ( H$alpha$) effect. Direct numerical simulations of the H$alpha$ effect are prese nted for two examples---the magnetically dominated toroidal plasma unstable to tearing modes, and the flow-dominated accretion disk.
Certain classes of astrophysical objects, namely magnetars and central engines of supernovae and gamma-ray bursts (GRBs), are characterized by extreme physical conditions not encountered elsewhere in the Universe. In particular, they possess magnetic fields that exceed the critical quantum field of 44 teragauss. Figuring out how these complex ultra-magnetized systems work requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD). However, an ultra-strong magnetic field modifies the underlying physics to such an extent that many relevant plasma-physical problems call for building QED-based relativistic quantum plasma physics. In this review, after describing the extreme astrophysical systems of interest and identifying the key relevant plasma-physical problems, we survey the recent progress in the development of such a theory. We discuss how a super-critical field modifies the properties of vacuum and matter and outline the basic theoretical framework for describing both non-relativistic and relativistic quantum plasmas. We then turn to astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and central engines of supernovae and long GRBs. Specifically, we discuss propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and GRB jet launching and propagation; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense magnetospheric electric currents with a magnetars surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress will require the development of numerical modeling capabilities.
We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. Turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it, and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (2015). At scales at and below the ion Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalisation of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvenic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfven waves transition into kinetic Alfven waves. Secondly, we derive and discuss a general free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfven waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy can cause large variations in the ion-to-electron heating ratio due to the dissipation of Alfvenic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects the turbulent fluctuation spectra, the differential heating of particle species, and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.
Hybrid-kinetic numerical simulations of firehose and mirror instabilities in a collisionless plasma are performed in which pressure anisotropy is driven as the magnetic field is changed by a persistent linear shear $S$. For a decreasing field, it is found that mostly oblique firehose fluctuations grow at ion Larmor scales and saturate with energies $sim$$S^{1/2}$; the pressure anisotropy is pinned at the stability threshold by particle scattering off microscale fluctuations. In contrast, nonlinear mirror fluctuations are large compared to the ion Larmor scale and grow secularly in time; marginality is maintained by an increasing population of resonant particles trapped in magnetic mirrors. After one shear time, saturated order-unity magnetic mirrors are formed and particles scatter off their sharp edges. Both instabilities drive sub-ion-Larmor--scale fluctuations, which appear to be kinetic-Alfv{e}n-wave turbulence. Our results impact theories of momentum and heat transport in astrophysical and space plasmas, in which the stretching of a magnetic field by shear is a generic process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا