Do you want to publish a course? Click here

Distributed control under compromised measurements:Resilient estimation, attack detection, and vehicle platooning

128   0   0.0 ( 0 )
 Added by Xingkang He
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study how to design a secure observer-based distributed controller such that a group of vehicles can achieve accurate state estimates and formation control even if the measurements of a subset of vehicle sensors are compromised by a malicious attacker. We propose an architecture consisting of a resilient observer, an attack detector, and an observer-based distributed controller. The distributed detector is able to update three sets of vehicle sensors: the ones surely under attack, surely attack-free, and suspected to be under attack. The adaptive observer saturates the measurement innovation through a preset static or time-varying threshold, such that the potentially compromised measurements have limited influence on the estimation. Essential properties of the proposed architecture include: 1) The detector is fault-free, and the attacked and attack-free vehicle sensors can be identified in finite time; 2) The observer guarantees both real-time error bounds and asymptotic error bounds, with tighter bounds when more attacked or attack-free vehicle sensors are identified by the detector; 3) The distributed controller ensures closed-loop stability. The effectiveness of the proposed methods is evaluated through simulations by an application to vehicle platooning.



rate research

Read More

The security of mobile robotic networks (MRNs) has been an active research topic in recent years. This paper demonstrates that the observable interaction process of MRNs under formation control will present increasingly severe threats. Specifically, we find that an external attack robot, who has only partial observation over MRNs while not knowing the system dynamics or access, can learn the interaction rules from observations and utilize them to replace a target robot, destroying the cooperation performance of MRNs. We call this novel attack as sneak, which endows the attacker with the intelligence of learning knowledge and is hard to be tackled by traditional defense techniques. The key insight is to separately reveal the internal interaction structure within robots and the external interaction mechanism with the environment, from the coupled state evolution influenced by the model-unknown rules and unobservable part of the MRN. To address this issue, we first provide general interaction process modeling and prove the learnability of the interaction rules. Then, with the learned rules, we design an Evaluate-Cut-Restore (ECR) attack strategy considering the partial interaction structure and geometric pattern. We also establish the sufficient conditions for a successful sneak with maximum control impacts over the MRN. Extensive simulations illustrate the feasibility and effectiveness of the proposed attack.
In this paper, we study how to secure the platooning of autonomous vehicles when an unknown vehicle is under attack and bounded system uncertainties exist. For the attacked vehicle, its position and speed measurements from GPS can be manipulated arbitrarily by a malicious attacker. First, to find out which vehicle is under attack, two detectors are proposed by using the relative measurements (by camera or radar) and the local innovation obtained through measurements from neighboring vehicles. Then, based on the results of the detectors, we design a local state observer for each vehicle by applying a saturation method to the measurement innovation. Moreover, based on the neighbor state estimates provided by the observer, a distributed controller is proposed to achieve the consensus in vehicle speed and keep fixed desired distance between two neighboring vehicles. The estimation error by the observer and the platooning error by the controller are shown to be asymptotically upper bounded under certain conditions. The effectiveness of the proposed methods is also evaluated in numerical simulations.
In this study, we propose a rotation-based connected automated vehicle (CAV) distributed cooperative control strategy for an on-ramp merging scenario. By assuming the mainline and ramp line are straight, we firstly design a virtual rotation approach that transfers the merging problem to a virtual car following (CF) problem to reduce the complexity and dimension of the cooperative CAVs merging control. Based on this concept, a multiple-predecessor virtual CF model and a unidirectional multi-leader communication topology are developed to determine the longitudinal behavior of each CAV. Specifically, we exploit a distributed feedback and feedforward longitudinal controller in preparation for actively generating gaps for merging CAVs, reducing the voids caused by merging, and ensuring safety and traffic efficiency during the process. To ensure the disturbance attenuation property of this system, practical string stability is mathematically proved for the virtual CF controllers to prohibit the traffic oscillation amplification through the traffic stream. Moreover, as a provision for extending the virtual CF application scenarios of any curvy ramp geometry, we utilize a curvilinear coordinate to model the two-dimensional merging control, and further design a local lateral controller based on an extended linear-quadratic regulator to regulate the position deviation and angular deviation of the lane centerlines. For the purpose of systematically evaluating the control performance of the proposed methods, numerical simulation experiments are conducted. As the results indicate, the proposed controllers can actively reduce the void and meanwhile guarantee the damping of traffic oscillations in the merging control area.
This paper studies distributed optimal formation control with hard constraints on energy levels and termination time, in which the formation error is to be minimized jointly with the energy cost. The main contributions include a globally optimal distributed formation control law and a comprehensive analysis of the resulting closed-loop system under those hard constraints. It is revealed that the energy levels, the task termination time, the steady-state error tolerance, as well as the network topology impose inherent limitations in achieving the formation control mission. Most notably, the lower bounds on the achievable termination time and the required minimum energy levels are derived, which are given in terms of the initial formation error, the steady-state error tolerance, and the largest eigenvalue of the Laplacian matrix. These lower bounds can be employed to assert whether an energy and time constrained formation task is achievable and how to accomplish such a task. Furthermore, the monotonicity of those lower bounds in relation to the control parameters is revealed. A simulation example is finally given to illustrate the obtained results.
This paper proposes a distributed framework for vehicle grid integration (VGI) taking into account the communication and physical networks. To this end, we model the electric vehicle (EV) behaviour that includes time of departure, time of arrival, state of charge, required energy, and its objectives, e.g., avoid battery degradation. Next, we formulate the centralised day ahead distribution market (DADM) which explicitly represents the physical system, supports unbalanced three phase networks with delta and wye connections, and incorporates the charging needs of EVs. The solution of the centralised market requires knowledge of EV information in terms of desired energy, departure and arrival times that EV owners are reluctant in providing. Moreover, the computational effort required to solve the DADM in cases of numerous EVs is very intensive. As such, we propose a distributed solution of the DADM clearing mechanism over a time-varying communication network. We illustrate the proposed VGI framework through the 13-bus, 33- bus, and 141-bus distribution feeders.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا