No Arabic abstract
Using a simplified microscopic model of coupled spin and lattice excitations in a ferromagnetic insulator we evaluate the magnetic-field dependence of the spin Seebeck effect at low temperatures. The model includes Heisenberg exchange coupling, a harmonic lattice potential, and a pseudo-dipolar exchange interaction. Our approach goes beyond previous work [Phys. Rev. B 98, 134421 (2018)] in that it does not rely on the a priori assumption of a fast equilibration of the magnon and phonon distributions. Our theory shows that singular features in the magnetic-field dependence of the spin Seebeck effect at low temperatures observed by Kikkawa et al. [Phys. Rev. Lett. 117, 207203 (2016)] are independent of the relative strength of magnon-impurity and phonon-impurity scattering.
We develop a Boltzmann transport theory of coupled magnon-phonon transport in ferromagnetic insulators. The explicit treatment of the magnon-phonon coupling within the Boltzmann approach allows us to calculate the low-temperature magnetic-field dependence of the spin-Seebeck voltage. Within the Boltzmann theory we find that this magnetic field dependence shows similar features as found by Flebus et al. [Phys. Rev. B 95, 144420 (2017)] for a strongly coupled magnon phonon system that forms magnon-polarons, and consistent with experimental findings in yttrium iron garnet by Kikkawa et al. [Phys. Rev. Lett. 117, 207203 (2016)]. In addition to the anomalous magnetic-field dependence of the spin Seebeck effect, we also predict a dependence on the system size.
The determination of the longitudinal spin Seebeck effect (LSSE) coefficient is currently plagued by a large uncertainty due to the poor reproducibility of the experimental conditions used in its measurement. In this work we present a detailed analysis of two different methods used for the determination of the LSSE coefficient. We have performed LSSE experiments in different laboratories, by using different setups and employing both the temperature difference method and the heat flux method. We found that the lack of reproducibility can be mainly attributed to the thermal contact resistance between the sample and the thermal baths which generate the temperature gradient. Due to the variation of the thermal resistance, we found that the scaling of the LSSE voltage to the heat flux through the sample rather than to the temperature difference across the sample greatly reduces the uncertainty. The characteristics of a single YIG/Pt LSSE device obtained with two different setups was $(1.143pm0.007)cdot 10^{-7}$ Vm/W and $(1.101pm0.015)cdot 10^{-7}$ Vm/W with the heat flux method and $(2.313pm0.017)cdot 10^{-7}$ V/K and $(4.956pm0.005)cdot 10^{-7}$ V/K with the temperature difference method. This shows that systematic errors can be considerably reduced with the heat flux method.
The rising field of spin caloritronics focuses on the interactions between spin and heat currents in a magnetic material; the observation of the spin Seebeck effect opened the route to this branch of research. This paper reports the results of a round robin test performed by five partners on a single device highlighting the reproducibility problems related to the measurements of the spin Seebeck coefficient, the quantity that describes the strength of the spin Seebeck effect. This work stimulated the search for more reproducible measurement methods through the analysis of the systematic effects.
We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced by laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is of the order of $10^8$ A m$^{-2}$ K$^{-1}$.
The longitudinal spin-Seebeck effect (SSE) in magnetic insulator$|$non-magnetic metal heterostructures has been theoretically studied primarily with the assumption of an isotropic interfacial exchange coupling. Here, we present a general theory of the SSE in the case of an antisymmetric Dzyaloshinskii-Moriya interaction (DMI) at the interface, in addition to the usual Heisenberg form. We numerically evaluate the dependence of the spin current on the temperature and bulk DMI using a pyrochlore iridate as a model insulator with all-in all-out (AIAO) ground state configuration. We also compare the results of different crystalline surfaces arising from different crystalline orientations and conclude that the relative angles between the interfacial moments and Dzyaloshinskii-Moriya vectors play a significant role in the spin transfer. Our work extends the theory of the SSE by including the anisotropic nature of the interfacial Dzyaloshinskii-Moriya exchange interaction in magnetic insulator$|$non-magnetic metal heterostructures and can suggest possible materials to optimize the interfacial spin transfer in spintronic devices.