Do you want to publish a course? Click here

COSEA: Convolutional Code Search with Layer-wise Attention

60   0   0.0 ( 0 )
 Added by Hao Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Semantic code search, which aims to retrieve code snippets relevant to a given natural language query, has attracted many research efforts with the purpose of accelerating software development. The huge amount of online publicly available code repositories has prompted the employment of deep learning techniques to build state-of-the-art code search models. Particularly, they leverage deep neural networks to embed codes and queries into a unified semantic vector space and then use the similarity between codes and querys vectors to approximate the semantic correlation between code and the query. However, most existing studies overlook the codes intrinsic structural logic, which indeed contains a wealth of semantic information, and fails to capture intrinsic features of codes. In this paper, we propose a new deep learning architecture, COSEA, which leverages convolutional neural networks with layer-wise attention to capture the valuable codes intrinsic structural logic. To further increase the learning efficiency of COSEA, we propose a variant of contrastive loss for training the code search model, where the ground-truth code should be distinguished from the most similar negative sample. We have implemented a prototype of COSEA. Extensive experiments over existing public datasets of Python and SQL have demonstrated that COSEA can achieve significant improvements over state-of-the-art methods on code search tasks.



rate research

Read More

155 - Xuye Liu , Dakuo Wang , April Wang 2021
Jupyter notebook allows data scientists to write machine learning code together with its documentation in cells. In this paper, we propose a new task of code documentation generation (CDG) for computational notebooks. In contrast to the previous CDG tasks which focus on generating documentation for single code snippets, in a computational notebook, one documentation in a markdown cell often corresponds to multiple code cells, and these code cells have an inherent structure. We proposed a new model (HAConvGNN) that uses a hierarchical attention mechanism to consider the relevant code cells and the relevant code tokens information when generating the documentation. Tested on a new corpus constructed from well-documented Kaggle notebooks, we show that our model outperforms other baseline models.
256 - Chen Zeng , Yue Yu , Shanshan Li 2021
With the rapid increase in the amount of public code repositories, developers maintain a great desire to retrieve precise code snippets by using natural language. Despite existing deep learning based approaches(e.g., DeepCS and MMAN) have provided the end-to-end solutions (i.e., accepts natural language as queries and shows related code fragments retrieved directly from code corpus), the accuracy of code search in the large-scale repositories is still limited by the code representation (e.g., AST) and modeling (e.g., directly fusing the features in the attention stage). In this paper, we propose a novel learnable deep Graph for Code Search (calleddeGraphCS), to transfer source code into variable-based flow graphs based on the intermediate representation technique, which can model code semantics more precisely compared to process the code as text directly or use the syntactic tree representation. Furthermore, we propose a well-designed graph optimization mechanism to refine the code representation, and apply an improved gated graph neural network to model variable-based flow graphs. To evaluate the effectiveness of deGraphCS, we collect a large-scale dataset from GitHub containing 41,152 code snippets written in C language, and reproduce several typical deep code search methods for comparison. Besides, we design a qualitative user study to verify the practical value of our approach. The experimental results have shown that deGraphCS can achieve state-of-the-art performances, and accurately retrieve code snippets satisfying the needs of the users.
Code search is a common practice for developers during software implementation. The challenges of accurate code search mainly lie in the knowledge gap between source code and natural language (i.e., queries). Due to the limited code-query pairs and large code-description pairs available, the prior studies based on deep learning techniques focus on learning the semantic matching relation between source code and corresponding description texts for the task, and hypothesize that the semantic gap between descriptions and user queries is marginal. In this work, we found that the code search models trained on code-description pairs may not perform well on user queries, which indicates the semantic distance between queries and code descriptions. To mitigate the semantic distance for more effective code search, we propose QueCos, a Query-enriched Code search model. QueCos learns to generate semantic enriched queries to capture the key semantics of given queries with reinforcement learning (RL). With RL, the code search performance is considered as a reward for producing accurate semantic enriched queries. The enriched queries are finally employed for code search. Experiments on the benchmark datasets show that QueCos can significantly outperform the state-of-the-art code search models.
236 - Chao Liu , Xin Xia , David Lo 2020
Code search is a core software engineering task. Effective code search tools can help developers substantially improve their software development efficiency and effectiveness. In recent years, many code search studies have leveraged different techniques, such as deep learning and information retrieval approaches, to retrieve expected code from a large-scale codebase. However, there is a lack of a comprehensive comparative summary of existing code search approaches. To understand the research trends in existing code search studies, we systematically reviewed 81 relevant studies. We investigated the publication trends of code search studies, analyzed key components, such as codebase, query, and modeling technique used to build code search tools, and classified existing tools into focusing on supporting seven different search tasks. Based on our findings, we identified a set of outstanding challenges in existing studies and a research roadmap for future code search research.
67 - Chao Liu , Xin Xia , David Lo 2020
To accelerate software development, developers frequently search and reuse existing code snippets from a large-scale codebase, e.g., GitHub. Over the years, researchers proposed many information retrieval (IR) based models for code search, which match keywords in query with code text. But they fail to connect the semantic gap between query and code. To conquer this challenge, Gu et al. proposed a deep-learning-based model named DeepCS. It jointly embeds method code and natural language description into a shared vector space, where methods related to a natural language query are retrieved according to their vector similarities. However, DeepCS working process is complicated and time-consuming. To overcome this issue, we proposed a simplified model CodeMatcher that leverages the IR technique but maintains many features in DeepCS. Generally, CodeMatcher combines query keywords with the original order, performs a fuzzy search on name and body strings of methods, and returned the best-matched methods with the longer sequence of used keywords. We verified its effectiveness on a large-scale codebase with about 41k repositories. Experimental results showed the simplified model CodeMatcher outperforms DeepCS by 97% in terms of MRR (a widely used accuracy measure for code search), and it is over 66 times faster than DeepCS. Besides, comparing with the state-of-the-art IR-based model CodeHow, CodeMatcher also improves the MRR by 73%. We also observed that: fusing the advantages of IR-based and deep-learning-based models is promising because they compensate with each other by nature; improving the quality of method naming helps code search, since method name plays an important role in connecting query and code.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا