Do you want to publish a course? Click here

Enriching Query Semantics for Code Search with Reinforcement Learning

136   0   0.0 ( 0 )
 Added by Chaozheng Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Code search is a common practice for developers during software implementation. The challenges of accurate code search mainly lie in the knowledge gap between source code and natural language (i.e., queries). Due to the limited code-query pairs and large code-description pairs available, the prior studies based on deep learning techniques focus on learning the semantic matching relation between source code and corresponding description texts for the task, and hypothesize that the semantic gap between descriptions and user queries is marginal. In this work, we found that the code search models trained on code-description pairs may not perform well on user queries, which indicates the semantic distance between queries and code descriptions. To mitigate the semantic distance for more effective code search, we propose QueCos, a Query-enriched Code search model. QueCos learns to generate semantic enriched queries to capture the key semantics of given queries with reinforcement learning (RL). With RL, the code search performance is considered as a reward for producing accurate semantic enriched queries. The enriched queries are finally employed for code search. Experiments on the benchmark datasets show that QueCos can significantly outperform the state-of-the-art code search models.



rate research

Read More

To accelerate software development, much research has been performed to help people understand and reuse the huge amount of available code resources. Two important tasks have been widely studied: code retrieval, which aims to retrieve code snippets relevant to a given natural language query from a code base, and code annotation, where the goal is to annotate a code snippet with a natural language description. Despite their advancement in recent years, the two tasks are mostly explored separately. In this work, we investigate a novel perspective of Code annotation for Code retrieval (hence called `CoaCor), where a code annotation model is trained to generate a natural language annotation that can represent the semantic meaning of a given code snippet and can be leveraged by a code retrieval model to better distinguish relevant code snippets from others. To this end, we propose an effective framework based on reinforcement learning, which explicitly encourages the code annotation model to generate annotations that can be used for the retrieval task. Through extensive experiments, we show that code annotations generated by our framework are much more detailed and more useful for code retrieval, and they can further improve the performance of existing code retrieval models significantly.
67 - Chao Liu , Xin Xia , David Lo 2020
To accelerate software development, developers frequently search and reuse existing code snippets from a large-scale codebase, e.g., GitHub. Over the years, researchers proposed many information retrieval (IR) based models for code search, which match keywords in query with code text. But they fail to connect the semantic gap between query and code. To conquer this challenge, Gu et al. proposed a deep-learning-based model named DeepCS. It jointly embeds method code and natural language description into a shared vector space, where methods related to a natural language query are retrieved according to their vector similarities. However, DeepCS working process is complicated and time-consuming. To overcome this issue, we proposed a simplified model CodeMatcher that leverages the IR technique but maintains many features in DeepCS. Generally, CodeMatcher combines query keywords with the original order, performs a fuzzy search on name and body strings of methods, and returned the best-matched methods with the longer sequence of used keywords. We verified its effectiveness on a large-scale codebase with about 41k repositories. Experimental results showed the simplified model CodeMatcher outperforms DeepCS by 97% in terms of MRR (a widely used accuracy measure for code search), and it is over 66 times faster than DeepCS. Besides, comparing with the state-of-the-art IR-based model CodeHow, CodeMatcher also improves the MRR by 73%. We also observed that: fusing the advantages of IR-based and deep-learning-based models is promising because they compensate with each other by nature; improving the quality of method naming helps code search, since method name plays an important role in connecting query and code.
The Transformer architecture and transfer learning have marked a quantum leap in natural language processing, improving the state of the art across a range of text-based tasks. This paper examines how these advancements can be applied to and improve code search. To this end, we pre-train a BERT-based model on combinations of natural language and source code data and evaluate it on pairs of StackOverflow question titles and code answers. Our results show that the pre-trained models consistently outperform the models that were not pre-trained. In cases where the model was pre-trained on natural language and source code data, it also outperforms an information retrieval baseline based on Lucene. Also, we demonstrated that combined use of an information retrieval-based approach followed by a Transformer, leads to the best results overall, especially when searching into a large search pool. Furthermore, transfer learning is particularly effective when much pre-training data is available and fine-tuning data is limited. We demonstrate that natural language processing models based on the Transformer architecture can be directly applied to source code analysis tasks, such as code search. With the development of Transformer models designed more specifically for dealing with source code data, we believe the results on source code analysis tasks can be further improved.
148 - Kaibo Cao 2021
As a popular Q&A site for programming, Stack Overflow is a treasure for developers. However, the amount of questions and answers on Stack Overflow make it difficult for developers to efficiently locate the information they are looking for. There are two gaps leading to poor search results: the gap between the users intention and the textual query, and the semantic gap between the query and the post content. Therefore, developers have to constantly reformulate their queries by correcting misspelled words, adding limitations to certain programming languages or platforms, etc. As query reformulation is tedious for developers, especially for novices, we propose an automated software-specific query reformulation approach based on deep learning. With query logs provided by Stack Overflow, we construct a large-scale query reformulation corpus, including the original queries and corresponding reformulated ones. Our approach trains a Transformer model that can automatically generate candidate reformulated queries when given the users original query. The evaluation results show that our approach outperforms five state-of-the-art baselines, and achieves a 5.6% to 33.5% boost in terms of $mathit{ExactMatch}$ and a 4.8% to 14.4% boost in terms of $mathit{GLEU}$.
We present an approach to combining distributional semantic representations induced from text corpora with manually constructed lexical-semantic networks. While both kinds of semantic resources are available with high lexical coverage, our aligned resource combines the domain specificity and availability of contextual information from distributional models with the conciseness and high quality of manually crafted lexical networks. We start with a distributional representation of induced senses of vocabulary terms, which are accompanied with rich context information given by related lexical items. We then automatically disambiguate such representations to obtain a full-fledged proto-conceptualization, i.e. a typed graph of induced word senses. In a final step, this proto-conceptualization is aligned to a lexical ontology, resulting in a hybrid aligned resource. Moreover, unmapped induced senses are associated with a semantic type in order to connect them to the core resource. Manual evaluations against ground-truth judgments for different stages of our method as well as an extrinsic evaluation on a knowledge-based Word Sense Disambiguation benchmark all indicate the high quality of the new hybrid resource. Additionally, we show the benefits of enriching top-down lexical knowledge resources with bottom-up distributional information from text for addressing high-end knowledge acquisition tasks such as cleaning hypernym graphs and learning taxonomies from scratch.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا