Do you want to publish a course? Click here

Opportunities and Challenges in Code Search Tools

237   0   0.0 ( 0 )
 Added by Chao Liu Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Code search is a core software engineering task. Effective code search tools can help developers substantially improve their software development efficiency and effectiveness. In recent years, many code search studies have leveraged different techniques, such as deep learning and information retrieval approaches, to retrieve expected code from a large-scale codebase. However, there is a lack of a comprehensive comparative summary of existing code search approaches. To understand the research trends in existing code search studies, we systematically reviewed 81 relevant studies. We investigated the publication trends of code search studies, analyzed key components, such as codebase, query, and modeling technique used to build code search tools, and classified existing tools into focusing on supporting seven different search tasks. Based on our findings, we identified a set of outstanding challenges in existing studies and a research roadmap for future code search research.



rate research

Read More

Blockchain technology promises a sizable potential for executing inter-organizational business processes without requiring a central party serving as a single point of trust (and failure). This paper analyzes its impact on business process management (BPM). We structure the discussion using two BPM frameworks, namely the six BPM core capabilities and the BPM lifecycle. This paper provides research directions for investigating the application of blockchain technology to BPM.
A great part of software development involves conceptualizing or communicating the underlying procedures and logic that needs to be expressed in programs. One major difficulty of programming is turning concept into code, especially when dealing with the APIs of unfamiliar libraries. Recently, there has been a proliferation of machine learning methods for code generation and retrieval from natural language queries, but these have primarily been evaluated purely based on retrieval accuracy or overlap of generated code with developer-written code, and the actual effect of these methods on the developer workflow is surprisingly unattested. We perform the first comprehensive investigation of the promise and challenges of using such technology inside the IDE, asking at the current state of technology does it improve developer productivity or accuracy, how does it affect the developer experience, and what are the remaining gaps and challenges? We first develop a plugin for the IDE that implements a hybrid of code generation and code retrieval functionality, and orchestrate virtual environments to enable collection of many user events. We ask developers with various backgrounds to complete 14 Python programming tasks ranging from basic file manipulation to machine learning or data visualization, with or without the help of the plugin. While qualitative surveys of developer experience are largely positive, quantitative results with regards to increased productivity, code quality, or program correctness are inconclusive. Analysis identifies several pain points that could improve the effectiveness of future machine learning based code generation/retrieval developer assistants, and demonstrates when developers prefer code generation over code retrieval and vice versa. We release all data and software to pave the road for future empirical studies and development of better models.
In Software Engineering, some of the most critical activities are maintenance and evolution. However, to perform both with quality, minimizing impacts and risks, developers need to analyze and identify where the main problems come from previously. In this paper, we introduce DR-Tools Suite, a set of lightweight open-source tools that analyze and calculate source code metrics, allowing developers to visualize the results in different formats and graphs. Also, we define a set of heuristics to help the code analysis. We conducted two case studies (one academic and one industrial) to collect feedback on the tools suite, on how we will evolve the tools, as well as insights to develop new tools that support developers in their daily work.
Background: In recent years, Low-code development (LCD) is growing rapidly, and Gartner and Forrester have predicted that the use of LCD is very promising. Giant companies, such as Microsoft, Mendix, and Outsystems have also launched their LCD platforms. Aim: In this work, we explored two popular online developer communities, Stack Overflow (SO) and Reddit, to provide insights on the characteristics and challenges of LCD from a practitioners perspective. Method: We used two LCD related terms to search the relevant posts in SO and extracted 73 posts. Meanwhile, we explored three LCD related subreddits from Reddit and collected 228 posts. We extracted data from these posts and applied the Constant Comparison method to analyze the descriptions, benefits, and limitations and challenges of LCD. For platforms and programming languages used in LCD, implementation units in LCD, supporting technologies of LCD, types of applications developed by LCD, and domains that use LCD, we used descriptive statistics to analyze and present the results. Results: Our findings show that: (1) LCD may provide a graphical user interface for users to drag and drop with little or even no code; (2) the equipment of out-of-the-box units (e.g., APIs and components) in LCD platforms makes them easy to learn and use as well as speeds up the development; (3) LCD is particularly favored in the domains that have the need for automated processes and workflows; and (4) practitioners have conflicting views on the advantages and disadvantages of LCD. Conclusions: Our findings suggest that researchers should clearly define the terms when they refer to LCD, and developers should consider whether the characteristics of LCD are appropriate for their projects.
In this paper, we present a tertiary systematic literature review of previous surveys, secondary systematic literature reviews, and systematic mappings. We identify the main observations (what we know) and challenges (what we do not know) on code smells and refactoring. We show that code smells and refactoring have a strong relationship with quality attributes, i.e., with understandability, maintainability, testability, complexity, functionality, and reusability. We argue that code smells and refactoring could be considered as the two faces of a same coin. Besides, we identify how refactoring affects quality attributes, more than code smells. We also discuss the implications of this work for practitioners, researchers, and instructors. We identify 13 open issues that could guide future research work. Thus, we want to highlight the gap between code smells and refactoring in the current state of software-engineering research. We wish that this work could help the software-engineering research community in collaborating on future work on code smells and refactoring.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا