Do you want to publish a course? Click here

Can jets make the radioactively powered emission from neutron star mergers bluer?

70   0   0.0 ( 0 )
 Added by Lorenzo Nativi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron star mergers eject neutron-rich matter in which heavy elements are synthesised. The decay of these freshly synthesised elements powers electromagnetic transients (macronovae or kilonovae) whose luminosity and colour strongly depend on their nuclear composition. If the ejecta are very neutron-rich (electron fraction $Y_mathrm{e} < 0.25$), they contain fair amounts of lanthanides and actinides which have large opacities and therefore efficiently trap the radiation inside the ejecta so that the emission peaks in the red part of the spectrum. Even small amounts of this high-opacity material can obscure emission from lower lying material and therefore act as a lanthanide curtain. Here, we investigate how a relativistic jet that punches through the ejecta can potentially push away a significant fraction of the high opacity material before the macronova begins to shine. We use the results of detailed neutrino-driven wind studies as initial conditions and explore with 3D special relativistic hydrodynamic simulations how jets are propagating through these winds. Subsequently, we perform Monte Carlo radiative transfer calculations to explore the resulting macronova emission. We find that the hole punched by the jet makes the macronova brighter and bluer for on-axis observers during the first few days of emission, and that more powerful jets have larger impacts on the macronova.



rate research

Read More

Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH) - neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the nature of compact binary coalescences.
We investigate systematically the dynamical mass ejection, r-process nucleosynthesis, and properties of electromagnetic counterparts of neutron-star (NS) mergers in dependence on the uncertain properties of the nuclear equation of state (EoS) by employing 40 representative, microphysical high-density EoSs in relativistic, hydrodynamical simulations. The crucial parameter determining the ejecta mass is the radius R_1.35 of a 1.35 M_sun NS. NSs with smaller R_1.35 (soft EoS) eject systematically higher masses. These range from ~10^-3 M_sun to ~10^-2 M_sun for 1.35-1.35 M_sun binaries and from ~5*10^-3 M_sun to ~2*10^-2 M_sun for 1.2-1.5 M_sun systems (with kinetic energies between ~5*10^49 erg and 10^51 erg). Correspondingly, the bolometric peak luminosities of the optical transients of symmetric (asymmetric) mergers vary between 3*10^41 erg/s and 14*10^41 erg/s (9*10^41 erg/s and 14.5*10^41 erg/s) on timescales between ~2 h and ~12 h. If these signals with absolute bolometric magnitudes from -15.0 to -16.7 are measured, the tight correlation of their properties with those of the merging NSs might provide valuable constraints on the high-density EoS. The r-process nucleosynthesis exhibits a remarkable robustness independent of the EoS, producing a nearly solar abundance pattern above mass number 130. By the r-process content of the Galaxy and the average production per event the Galactic merger rate is limited to 4*10^-5/yr (4*10^-4/yr) for a soft (stiff) NS EoS, if NS mergers are the main source of heavy r-nuclei. The production ratio of radioactive 232Th to 238U attains a stable value of 1.64-1.67, which does not exclude NS mergers as potential sources of heavy r-material in the most metal-poor stars.
The short-duration ($lesssim2;$s) GRB 170817A in the nearby ($D=40;$Mpc) elliptical galaxy NGC 4993 is the first electromagnetic counterpart of the first gravitational wave (GW) detection of a binary neutron-star (NS-NS) merger. It was followed by optical, IR, and UV emission from half a day up to weeks after the event, as well as late time X-ray and radio emission. The early UV, optical, and IR emission showed a quasi-thermal spectrum suggestive of radioactive-decay powered kilonova-like emission. Comparison to kilonova models favors the formation of a short-lived ($sim1;$s) hypermassive NS, which is also supported by the $Delta tapprox1.74;$s delay between the GW chirp signal and the prompt GRB onset. However, the late onset of the X-ray (8.9$;$days) and radio (16.4$;$days) emission, together with the low isotropic equivalent $gamma$-ray energy output ($E_{rmgamma,iso}approx5times10^{46};$erg), strongly suggest emission from a narrow relativistic jet viewed off-axis. Here we set up a general framework for off-axis GRB jet afterglow emission, comparing analytic and numerical approaches, and showing their general predictions for short-hard GRBs that accompany binary NS mergers. The prompt GRB emission suggests a viewing angle well outside the jets core, and we compare the afterglow lightcurves expected in such a case to the X-ray to radio emission from GRB 170817A. We fit an afterglow off-axis jet model to the X-ray and radio data and find that the observations are explained by a viewing angle $theta_{rm obs}approx16^circ-26^circ$, GRB jet energy $Esim10^{48.5}-10^{49.5}~{rm erg}$, and external density $nsim10^{-5}-10^{-1}~{rm cm}^{-3}$ for a $xi_esim 0.1$ non-thermal electron acceleration efficiency.
We present radiative transfer simulations for blue kilonovae hours after neutron star (NS) mergers by performing detailed opacity calculations for the first time. We calculate atomic structures and opacities of highly ionized elements (up to the tenth ionization) with atomic number Z = 20 - 56. We find that the bound-bound transitions of heavy elements are the dominant source of the opacities in the early phase (t < 1 day after the merger), and that the ions with a half-closed electron shell provide the highest contributions. The Planck mean opacity for lanthanide-free ejecta (with electron fraction of Ye = 0.30 - 0.40) can only reach around kappa ~ 0.5 - 1 cm^2 g^-1 at t = 0.1 day, whereas that increases up to kappa ~ 5 - 10 cm^2 g^-1 at t = 1 day. The spherical ejecta model with an ejecta mass of Mej = 0.05Msun gives the bolometric luminosity of ~ 2 x 10^42 erg s^-1 at t ~ 0.1 day. We confirm that the existing bolometric and multi-color data of GW170817 can be naturally explained by the purely radioactive model. The expected early UV signals reach 20.5 mag at t ~ 4.3 hours for sources even at 200 Mpc, which is detectable by the facilities such as Swift and the Ultraviolet Transient Astronomy Satellite (ULTRASAT). The early-phase luminosity is sensitive to the structure of the outer ejecta, as also pointed out by Kasen et al. (2017). Therefore, the early UV observations give strong constraints on the structure of the outer ejecta as well as the presence of a heating source besides r-process nuclei.
93 - Navin Sridhar 2020
During the final stages of a compact object merger, if at least one of the binary components is a magnetized neutron star (NS), then its orbital motion substantially expands the NSs open magnetic flux -- and hence increases its wind luminosity -- relative to that of an isolated pulsar. As the binary orbit shrinks due to gravitational radiation, the power and speed of this binary-induced inspiral wind may (depending on pair loading) secularly increase, leading to self-interaction and internal shocks in the outflow beyond the binary orbit. The magnetized forward shock can generate coherent radio emission via the synchrotron maser process, resulting in an observable radio precursor to binary NS merger. We perform 1D relativistic hydrodynamical simulations of shock interaction in the accelerating binary NS wind, assuming that the inspiral wind efficiently converts its Poynting flux into bulk kinetic energy prior to the shock radius. This is combined with the shock maser spectrum from particle-in-cell simulations, to generate synthetic radio light curves. The precursor burst with a fluence of $sim1$ Jy$cdot$ms at $sim$GHz frequencies lasts $sim 1-500$ ms following the merger for a source at $sim3$ Gpc ($B_{rm d}/10^{12}$ G)$^{8/9}$, where $B_{rm d}$ is the dipole field strength of the more strongly-magnetized star. Given an outflow geometry concentrated along the binary equatorial, the signal may be preferentially observable for high-inclination systems, i.e. those least likely to produce a detectable gamma-ray burst.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا