Do you want to publish a course? Click here

Shock-powered radio precursors of neutron star mergers from accelerating relativistic binary winds

94   0   0.0 ( 0 )
 Added by Navin Sridhar
 Publication date 2020
  fields Physics
and research's language is English
 Authors Navin Sridhar




Ask ChatGPT about the research

During the final stages of a compact object merger, if at least one of the binary components is a magnetized neutron star (NS), then its orbital motion substantially expands the NSs open magnetic flux -- and hence increases its wind luminosity -- relative to that of an isolated pulsar. As the binary orbit shrinks due to gravitational radiation, the power and speed of this binary-induced inspiral wind may (depending on pair loading) secularly increase, leading to self-interaction and internal shocks in the outflow beyond the binary orbit. The magnetized forward shock can generate coherent radio emission via the synchrotron maser process, resulting in an observable radio precursor to binary NS merger. We perform 1D relativistic hydrodynamical simulations of shock interaction in the accelerating binary NS wind, assuming that the inspiral wind efficiently converts its Poynting flux into bulk kinetic energy prior to the shock radius. This is combined with the shock maser spectrum from particle-in-cell simulations, to generate synthetic radio light curves. The precursor burst with a fluence of $sim1$ Jy$cdot$ms at $sim$GHz frequencies lasts $sim 1-500$ ms following the merger for a source at $sim3$ Gpc ($B_{rm d}/10^{12}$ G)$^{8/9}$, where $B_{rm d}$ is the dipole field strength of the more strongly-magnetized star. Given an outflow geometry concentrated along the binary equatorial, the signal may be preferentially observable for high-inclination systems, i.e. those least likely to produce a detectable gamma-ray burst.



rate research

Read More

220 - Tomonori Totani 2013
Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of NS-NS merger rate and its cosmological evolution, while a large fraction of NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength (~ 10^{12-13} G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH) - neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the nature of compact binary coalescences.
Motivated by the recent discovery of the binary neutron-star (BNS) merger GW170817, we determine the optimal observational setup for detecting and characterizing radio counterparts of nearby ($d_Lsim40$,Mpc) BNS mergers. We simulate GW170817-like radio transients, and radio afterglows generated by fast jets with isotropic energy $E_{rm iso}sim 10^{50}$,erg, expanding in a low-density interstellar medium (ISM; $n_{rm ISM}=10^{-4}-10^{-2}$,cm$^{-3}$), observed from different viewing angles (from slightly off-axis to largely off-axis). We then determine the optimal timing of GHz radio observations following the precise localization of the BNS radio counterpart candidate, assuming a sensitivity comparable to that of the Karl G. Jansky Very Large Array. The optimization is done so as to ensure that properties such as viewing angle and circumstellar density can be correctly reconstructed with the minimum number of observations. We show that radio is the optimal band to explore the fastest ejecta from BNSs in low-density ISM, since the optical emission is likelyto be dominated by the so-called `kilonova component, while X-rays from the jet are detectable only for a small subset of the BNS models considered here. Finally, we discuss how future radio arrays like the next generation VLA (ngVLA) would improve the detectability of BNS mergers with physical parameters similar to the ones here explored.
Magnetar bursts can be emitted by Alfven waves growing in the outer magnetosphere to nonlinear amplitudes, $delta B/Bsim 1$, and triggering magnetic reconnection. Similar magnetic flares should occur quasi-periodically in a magnetized neutron star binary nearing merger. In both cases, fast dissipation in the magnetic flare creates optically thick $e^pm$ plasma, whose heat capacity is negligible compared with the generated radiation energy. Magnetic dissipation then involves photon viscosity and acts through Compton drag on the plasma bulk motions in the reconnection region. The effective temperature of the resulting Comptonization process is self-regulated to tens of keV. The generated X-ray emission is calculated using time-dependent radiative transfer simulations, which follow the creation of $e^pm$ pairs and the production, Comptonization, and escape of photons. The simulations show how the dissipation region becomes dressed in an $e^pm$ coat, and how the escaping spectrum is shaped by radiative transfer through the coat. The results are compared with observed magnetar bursts, including the recent activity of SGR 1935+2154 accompanied by a fast radio burst. Predictions are made for X-ray precursors of magnetized neutron star mergers.
69 - Lorenzo Nativi 2020
Neutron star mergers eject neutron-rich matter in which heavy elements are synthesised. The decay of these freshly synthesised elements powers electromagnetic transients (macronovae or kilonovae) whose luminosity and colour strongly depend on their nuclear composition. If the ejecta are very neutron-rich (electron fraction $Y_mathrm{e} < 0.25$), they contain fair amounts of lanthanides and actinides which have large opacities and therefore efficiently trap the radiation inside the ejecta so that the emission peaks in the red part of the spectrum. Even small amounts of this high-opacity material can obscure emission from lower lying material and therefore act as a lanthanide curtain. Here, we investigate how a relativistic jet that punches through the ejecta can potentially push away a significant fraction of the high opacity material before the macronova begins to shine. We use the results of detailed neutrino-driven wind studies as initial conditions and explore with 3D special relativistic hydrodynamic simulations how jets are propagating through these winds. Subsequently, we perform Monte Carlo radiative transfer calculations to explore the resulting macronova emission. We find that the hole punched by the jet makes the macronova brighter and bluer for on-axis observers during the first few days of emission, and that more powerful jets have larger impacts on the macronova.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا