No Arabic abstract
Heatmap regression (HR) has become one of the mainstream approaches for face alignment and has obtained promising results under constrained environments. However, when a face image suffers from large pose variations, heavy occlusions and complicated illuminations, the performances of HR methods degrade greatly due to the low resolutions of the generated landmark heatmaps and the exclusion of important high-order information that can be used to learn more discriminative features. To address the alignment problem for faces with extremely large poses and heavy occlusions, this paper proposes a heatmap subpixel regression (HSR) method and a multi-order cross geometry-aware (MCG) model, which are seamlessly integrated into a novel multi-order high-precision hourglass network (MHHN). The HSR method is proposed to achieve high-precision landmark detection by a well-designed subpixel detection loss (SDL) and subpixel detection technology (SDT). At the same time, the MCG model is able to use the proposed multi-order cross information to learn more discriminative representations for enhancing facial geometric constraints and context information. To the best of our knowledge, this is the first study to explore heatmap subpixel regression for robust and high-precision face alignment. The experimental results from challenging benchmark datasets demonstrate that our approach outperforms state-of-the-art methods in the literature.
Multi-face alignment aims to identify geometry structures of multiple faces in an image, and its performance is essential for the many practical tasks, such as face recognition, face tracking, and face animation. In this work, we present a fast bottom-up multi-face alignment approach, which can simultaneously localize multi-person facial landmarks with high precision.In more detail, our bottom-up architecture maps the landmarks to the high-dimensional space with which landmarks of all faces are represented. By clustering the features belonging to the same face, our approach can align the multi-person facial landmarks synchronously.Extensive experiments show that our method can achieve high performance in the multi-face landmark alignment task while our model is extremely fast. Moreover, we propose a new multi-face dataset to compare the speed and precision of bottom-up face alignment method with top-down methods. Our dataset is publicly available at https://github.com/AISAResearch/FoxNet
Face restoration from low resolution and noise is important for applications of face analysis recognition. However, most existing face restoration models omit the multiple scale issues in face restoration problem, which is still not well-solved in research area. In this paper, we propose a Sequential Gating Ensemble Network (SGEN) for multi-scale noise robust face restoration issue. To endow the network with multi-scale representation ability, we first employ the principle of ensemble learning for SGEN network architecture designing. The SGEN aggregates multi-level base-encoders and base-decoders into the network, which enables the network to contain multiple scales of receptive field. Instead of combining these base-en/decoders directly with non-sequential operations, the SGEN takes base-en/decoders from different levels as sequential data. Specifically, it is visualized that SGEN learns to sequentially extract high level information from base-encoders in bottom-up manner and restore low level information from base-decoders in top-down manner. Besides, we propose to realize bottom-up and top-down information combination and selection with Sequential Gating Unit (SGU). The SGU sequentially takes information from two different levels as inputs and decides the output based on one active input. Experiment results on benchmark dataset demonstrate that our SGEN is more effective at multi-scale human face restoration with more image details and less noise than state-of-the-art image restoration models. Further utilizing adversarial training scheme, SGEN also produces more visually preferred results than other models under subjective evaluation.
Facial landmarks are highly correlated with each other since a certain landmark can be estimated by its neighboring landmarks. Most of the existing deep learning methods only use one fully-connected layer called shape prediction layer to estimate the locations of facial landmarks. In this paper, we propose a novel deep learning framework named Multi-Center Learning with multiple shape prediction layers for face alignment. In particular, each shape prediction layer emphasizes on the detection of a certain cluster of semantically relevant landmarks respectively. Challenging landmarks are focused firstly, and each cluster of landmarks is further optimized respectively. Moreover, to reduce the model complexity, we propose a model assembling method to integrate multiple shape prediction layers into one shape prediction layer. Extensive experiments demonstrate that our method is effective for handling complex occlusions and appearance variations with real-time performance. The code for our method is available at https://github.com/ZhiwenShao/MCNet-Extension.
Practical face recognition has been studied in the past decades, but still remains an open challenge. Current prevailing approaches have already achieved substantial breakthroughs in recognition accuracy. However, their performance usually drops dramatically if face samples are severely misaligned. To address this problem, we propose a highly efficient misalignment-robust locality-constrained representation (MRLR) algorithm for practical real-time face recognition. Specifically, the locality constraint that activates the most correlated atoms and suppresses the uncorrelated ones, is applied to construct the dictionary for face alignment. Then we simultaneously align the warped face and update the locality-constrained dictionary, eventually obtaining the final alignment. Moreover, we make use of the block structure to accelerate the derived analytical solution. Experimental results on public data sets show that MRLR significantly outperforms several state-of-the-art approaches in terms of efficiency and scalability with even better performance.
Recently, heatmap regression has been widely explored in facial landmark detection and obtained remarkable performance. However, most of the existing heatmap regression-based facial landmark detection methods neglect to explore the high-order feature correlations, which is very important to learn more representative features and enhance shape constraints. Moreover, no explicit global shape constraints have been added to the final predicted landmarks, which leads to a reduction in accuracy. To address these issues, in this paper, we propose a Multi-order Multi-constraint Deep Network (MMDN) for more powerful feature correlations and shape constraints learning. Specifically, an Implicit Multi-order Correlating Geometry-aware (IMCG) model is proposed to introduce the multi-order spatial correlations and multi-order channel correlations for more discriminative representations. Furthermore, an Explicit Probability-based Boundary-adaptive Regression (EPBR) method is developed to enhance the global shape constraints and further search the semantically consistent landmarks in the predicted boundary for robust facial landmark detection. Its interesting to show that the proposed MMDN can generate more accurate boundary-adaptive landmark heatmaps and effectively enhance shape constraints to the predicted landmarks for faces with large pose variations and heavy occlusions. Experimental results on challenging benchmark datasets demonstrate the superiority of our MMDN over state-of-the-art facial landmark detection methods. The code has been publicly available at https://github.com/junwan2014/MMDN-master.