Do you want to publish a course? Click here

Deep Multi-Center Learning for Face Alignment

148   0   0.0 ( 0 )
 Added by Zhiwen Shao
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Facial landmarks are highly correlated with each other since a certain landmark can be estimated by its neighboring landmarks. Most of the existing deep learning methods only use one fully-connected layer called shape prediction layer to estimate the locations of facial landmarks. In this paper, we propose a novel deep learning framework named Multi-Center Learning with multiple shape prediction layers for face alignment. In particular, each shape prediction layer emphasizes on the detection of a certain cluster of semantically relevant landmarks respectively. Challenging landmarks are focused firstly, and each cluster of landmarks is further optimized respectively. Moreover, to reduce the model complexity, we propose a model assembling method to integrate multiple shape prediction layers into one shape prediction layer. Extensive experiments demonstrate that our method is effective for handling complex occlusions and appearance variations with real-time performance. The code for our method is available at https://github.com/ZhiwenShao/MCNet-Extension.



rate research

Read More

In this paper, we present a deep learning based image feature extraction method designed specifically for face images. To train the feature extraction model, we construct a large scale photo-realistic face image dataset with ground-truth correspondence between multi-view face images, which are synthesized from real photographs via an inverse rendering procedure. The deep face feature (DFF) is trained using correspondence between face images rendered from different views. Using the trained DFF model, we can extract a feature vector for each pixel of a face image, which distinguishes different facial regions and is shown to be more effective than general-purpose feature descriptors for face-related tasks such as matching and alignment. Based on the DFF, we develop a robust face alignment method, which iteratively updates landmarks, pose and 3D shape. Extensive experiments demonstrate that our method can achieve state-of-the-art results for face alignment under highly unconstrained face images.
In this paper, we propose a novel face alignment method that trains deep convolutional network from coarse to fine. It divides given landmarks into principal subset and elaborate subset. We firstly keep a large weight for principal subset to make our network primarily predict their locations while slightly take elaborate subset into account. Next the weight of principal subset is gradually decreased until two subsets have equivalent weights. This process contributes to learn a good initial model and search the optimal model smoothly to avoid missing fairly good intermediate models in subsequent procedures. On the challenging COFW dataset [1], our method achieves 6.33% mean error with a reduction of 21.37% compared with the best previous result [2].
Multi-face alignment aims to identify geometry structures of multiple faces in an image, and its performance is essential for the many practical tasks, such as face recognition, face tracking, and face animation. In this work, we present a fast bottom-up multi-face alignment approach, which can simultaneously localize multi-person facial landmarks with high precision.In more detail, our bottom-up architecture maps the landmarks to the high-dimensional space with which landmarks of all faces are represented. By clustering the features belonging to the same face, our approach can align the multi-person facial landmarks synchronously.Extensive experiments show that our method can achieve high performance in the multi-face landmark alignment task while our model is extremely fast. Moreover, we propose a new multi-face dataset to compare the speed and precision of bottom-up face alignment method with top-down methods. Our dataset is publicly available at https://github.com/AISAResearch/FoxNet
We innovatively propose a flexible and consistent face alignment framework, LDDMM-Face, the key contribution of which is a deformation layer that naturally embeds facial geometry in a diffeomorphic way. Instead of predicting facial landmarks via heatmap or coordinate regression, we formulate this task in a diffeomorphic registration manner and predict momenta that uniquely parameterize the deformation between initial boundary and true boundary, and then perform large deformation diffeomorphic metric mapping (LDDMM) simultaneously for curve and landmark to localize the facial landmarks. Due to the embedding of LDDMM into a deep network, LDDMM-Face can consistently annotate facial landmarks without ambiguity and flexibly handle various annotation schemes, and can even predict dense annotations from sparse ones. Our method can be easily integrated into various face alignment networks. We extensively evaluate LDDMM-Face on four benchmark datasets: 300W, WFLW, HELEN and COFW-68. LDDMM-Face is comparable or superior to state-of-the-art methods for traditional within-dataset and same-annotation settings, but truly distinguishes itself with outstanding performance when dealing with weakly-supervised learning (partial-to-full), challenging cases (e.g., occluded faces), and different training and prediction datasets. In addition, LDDMM-Face shows promising results on the most challenging task of predicting across datasets with different annotation schemes.
Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easy-to-implement. While numerous hand-crafted and learning-based representations have been proposed, considerable room for improvement is still present. In this paper, we present a very easy-to-implement deep learning framework for face representation. Our method bases on a new structure of deep network (called Pyramid CNN). The proposed Pyramid CNN adopts a greedy-filter-and-down-sample operation, which enables the training procedure to be very fast and computation-efficient. In addition, the structure of Pyramid CNN can naturally incorporate feature sharing across multi-scale face representations, increasing the discriminative ability of resulting representation. Our basic network is capable of achieving high recognition accuracy ($85.8%$ on LFW benchmark) with only 8 dimension representation. When extended to feature-sharing Pyramid CNN, our system achieves the state-of-the-art performance ($97.3%$) on LFW benchmark. We also introduce a new benchmark of realistic face images on social network and validate our proposed representation has a good ability of generalization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا