Do you want to publish a course? Click here

Entanglement transfer, accumulation and retrieval via quantum-walk-based qubit-qudit dynamics

124   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies. Achieving such non-classical high-dimensional resources will potentially unlock enhanced capabilities for quantum cryptography, communication and computation. We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based {it transfer & accumulate} mechanism involving coin and walker degrees of freedom. The choice of investigating quantum walks is motivated by their generality and versatility, complemented by their successful implementation in several physical systems. Hence, given the cross-cutting role of quantum walks across quantum information, our protocol potentially represents a versatile general tool to control high-dimensional entanglement generation in various experimental platforms. In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.



rate research

Read More

The entanglement witness is an important and experimentally applicable tool for entanglement detection. In this paper, we provide a nonlinear improvement of any entanglement witness for $2otimes d$ quantum systems. Compared with any existing entanglement witness, the improved separability criterion only needs two more measurements on local observables. Detailed examples are employed to illustrate the efficiency of the nonlinear improvement for general, optimal and non-decomposable entanglement witnesses.
Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Recent experiments have shown that superconducting qubits can control and detect individual phonons in a resonant structure, enabling the coherent generation and measurement of complex stationary phonon states. Here, we report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2 mm-long acoustic quantum communication channel, equivalent to a 500 ns delay line, we demonstrate the emission and re-capture of a phonon by one qubit; quantum state transfer between two qubits with a 67% efficiency; and, by partial transfer of a phonon between two qubits, generation of an entangled Bell pair with a fidelity of $mathcal{F}_B = 84 pm 1$ %
We present an entanglement swapping process for unknown nonmaximally entangled photonic states, where the standard Bell-state measurement is replaced by a three-step quantum walk-like state discrimination process, i.e., the practically nontrivial coupling element of two photons is replaced by manipulating their trajectories, which will greatly enrich the dynamics of the coupling between photons in realizing quantum computation, and reduce the integration complexity of optical quantum processing. In addition, the output state can be maximally entangled, which allows for entanglement concentration as well.
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induced by means of strong and localized magnetic fields. We derive exact analytical formulae for the fidelity of the quantum state transfer, and obtain a high-quality transfer for general quantum states as well as for specific classes of states relevant for quantum information processing.
Quantum mechanical properties like entanglement, discord and coherence act as fundamental resources in various quantum information processing tasks. Consequently, generating more resources from a few, typically termed as broadcasting is a task of utmost significance. One such strategy of broadcasting is through the application of cloning machines. In this article, broadcasting of quantum resources beyond $2 otimes 2$ systems is investigated. In particular, in $2otimes3$ dimension, a class of states not useful for broadcasting of entanglement is characterized for a choice of optimal universal Heisenberg cloning machine. The broadcasting ranges for maximally entangled mixed states (MEMS) and two parameter class of states (TPCS) are obtained to exemplify our protocol. A significant derivative of the protocol is the generation of entangled states with positive partial transpose in $3 otimes 3$ dimension and states which are absolutely separable in $2 otimes 2$ dimension. Moving beyond entanglement, in $2 otimes d$ dimension, the impossibility to optimally broadcast quantum correlations beyond entanglement (QCsbE) (discord) and quantum coherence ($l_{1}$-norm) is established. However, some significant illustrations are provided to highlight that non-optimal broadcasting of QCsbE and coherence are still possible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا