Do you want to publish a course? Click here

Many-qubit quantum state transfer via spin chains

188   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induced by means of strong and localized magnetic fields. We derive exact analytical formulae for the fidelity of the quantum state transfer, and obtain a high-quality transfer for general quantum states as well as for specific classes of states relevant for quantum information processing.



rate research

Read More

99 - Feng Mei , Gang Chen , Lin Tian 2017
Robust quantum state transfer (QST) is an indispensable ingredient in scalable quantum information processing. Here we present an experimentally feasible mechanism for realizing robust QST via topologically protected edge states in superconducting qubit chains. Using superconducting Xmon qubits with tunable couplings, we construct generalized Su-Schrieffer-Heeger models and analytically derive the wave functions of topological edge states. We find that such edge states can be employed as a quantum channel to realize robust QST between remote qubits. With a numerical simulation, we show that both single-qubit states and two-qubit entangled states can be robustly transferred in the presence of sizable imperfections in the qubit couplings. The transfer fidelity demonstrates a wide plateau at the value of unity in the imperfection magnitude. This approach is general and can be implemented in a variety of quantum computing platforms.
We explore the capability of spin-1/2 chains to act as quantum channels for both teleportation and transfer of qubits. Exploiting the emergence of long-distance entanglement in low-dimensional systems [Phys. Rev. Lett. 96, 247206 (2006)], here we show how to obtain high communication fidelities between distant parties. An investigation of protocols of teleportation and state transfer is presented, in the realistic situation where temperature is included. Basing our setup on antiferromagnetic rotationally invariant systems, both protocols are represented by pure depolarizing channels. We propose a scheme where channel fidelity close to one can be achieved on very long chains at moderately small temperature.
We propose a protocol for state transfer and entanglement generation between two distant spin qubits (sender and receiver) that have different energies. The two qubits are permanently coupled to a far off-resonant spin-chain, and the qubit of the sender is driven by an external field, which provides the energy required to bridge the energy gap between the sender and the receiver. State transfer and entanglement generation are achieved via virtual single-photon and multi-photon transitions to the eigenmodes of the channel.
In this letter we propose a superadiabatic protocol where quantum state transfer can be achieved with arbitrarily high accuracy and minimal control across long spin chains with an odd number of spins. The quantum state transfer protocol only requires the control of the couplings between the qubits on the edge and the spin chain. We predict fidelities above 0.99 for an evolution of nanoseconds using typical spin exchange coupling values of {mu}eV. Furthermore, by building a superadiabatic formalism on top of this protocol, we propose a effective superadiabatic protocol that retains the minimal control over the spin chain and improves the fidelity by up to 20%.
Although a complete picture of the full evolution of complex quantum systems would certainly be the most desirable goal, for particular Quantum Information Processing schemes such an analysis is not necessary. When quantum correlations between only specific elements of a many-body system are required for the performance of a protocol, a more distinguished and specialised investigation is helpful. Here, we provide a striking example with the achievement of perfect state transfer in a spin chain without state initialisation, whose realisation has been shown to be possible in virtue of the correlations set between the first and last spin of the transmission-chain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا