Do you want to publish a course? Click here

Data assimilation for chaotic dynamics

107   0   0.0 ( 0 )
 Added by Alberto Carrassi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chaos is ubiquitous in physical systems. The associated sensitivity to initial conditions is a significant obstacle in forecasting the weather and other geophysical fluid flows. Data assimilation is the process whereby the uncertainty in initial conditions is reduced by the astute combination of model predictions and real-time data. This chapter reviews recent findings from investigations on the impact of chaos on data assimilation methods: for the Kalman filter and smoother in linear systems, analytic results are derived; for their ensemble-bas



rate research

Read More

Data assimilation (DA) aims at optimally merging observational data and model outputs to create a coherent statistical and dynamical picture of the system under investigation. Indeed, DA aims at minimizing the effect of observational and model error, and at distilling the correct ingredients of its dynamics. DA is of critical importance for the analysis of systems featuring sensitive dependence on the initial conditions, as chaos wins over any finitely accurate knowledge of the state of the system, even in absence of model error. Clearly, the skill of DA is guided by the properties of dynamical system under investigation, as merging optimally observational data and model outputs is harder when strong instabilities are present. In this paper we reverse the usual angle on the problem and show that it is indeed possible to use the skill of DA to infer some basic properties of the tangent space of the system, which may be hard to compute in very high-dimensional systems. Here, we focus our attention on the first Lyapunov exponent and the Kolmogorov-Sinai entropy, and perform numerical experiments on the Vissio-Lucarini 2020 model, a recently proposed generalisation of the Lorenz 1996 model that is able to describe in a simple yet meaningful way the interplay between dynamical and thermodynamical variables.
172 - K. J. H. Law , A. M. Stuart 2011
Data assimilation leads naturally to a Bayesian formulation in which the posterior probability distribution of the system state, given the observations, plays a central conceptual role. The aim of this paper is to use this Bayesian posterior probability distribution as a gold standard against which to evaluate various commonly used data assimilation algorithms. A key aspect of geophysical data assimilation is the high dimensionality and low predictability of the computational model. With this in mind, yet with the goal of allowing an explicit and accurate computation of the posterior distribution, we study the 2D Navier-Stokes equations in a periodic geometry. We compute the posterior probability distribution by state-of-the-art statistical sampling techniques. The commonly used algorithms that we evaluate against this accurate gold standard, as quantified by comparing the relative error in reproducing its moments, are 4DVAR and a variety of sequential filtering approximations based on 3DVAR and on extended and ensemble Kalman filters. The primary conclusions are that: (i) with appropriate parameter choices, approximate filters can perform well in reproducing the mean of the desired probability distribution; (ii) however they typically perform poorly when attempting to reproduce the covariance; (iii) this poor performance is compounded by the need to modify the covariance, in order to induce stability. Thus, whilst filters can be a useful tool in predicting mean behavior, they should be viewed with caution as predictors of uncertainty. These conclusions are intrinsic to the algorithms and will not change if the model complexity is increased, for example by employing a smaller viscosity, or by using a detailed NWP model.
In statistical data assimilation (SDA) and supervised machine learning (ML), we wish to transfer information from observations to a model of the processes underlying those observations. For SDA, the model consists of a set of differential equations that describe the dynamics of a physical system. For ML, the model is usually constructed using other strategies. In this paper, we develop a systematic formulation based on Monte Carlo sampling to achieve such information transfer. Following the derivation of an appropriate target distribution, we present the formulation based on the standard Metropolis-Hasting (MH) procedure and the Hamiltonian Monte Carlo (HMC) method for performing the high dimensional integrals that appear. To the extensive literature on MH and HMC, we add (1) an annealing method using a hyperparameter that governs the precision of the model to identify and explore the highest probability regions of phase space dominating those integrals, and (2) a strategy for initializing the state space search. The efficacy of the proposed formulation is demonstrated using a nonlinear dynamical model with chaotic solutions widely used in geophysics.
91 - D. Napoletani 2005
In this paper we utilize techniques from the theory of non-linear dynamical systems to define a notion of embedding threshold estimators. More specifically we use delay-coordinates embeddings of sets of coefficients of the measured signal (in some chosen frame) as a data mining tool to separate structures that are likely to be generated by signals belonging to some predetermined data set. We describe a particular variation of the embedding threshold estimator implemented in a windowed Fourier frame, and we apply it to speech signals heavily corrupted with the addition of several types of white noise. Our experimental work seems to suggest that, after training on the data sets of interest,these estimators perform well for a variety of white noise processes and noise intensity levels. The method is compared, for the case of Gaussian white noise, to a block thresholding estimator.
Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research data-assimilation has been successfully used to optimally combine forecast models and their inherent uncertainty with incoming noisy observations. The key idea in our work here is to achieve increased forecast capabilities by judiciously combining machine-learning algorithms and data assimilation. We combine the physics-agnostic data-driven approach of random feature maps as a forecast model within an ensemble Kalman filter data assimilation procedure. The machine-learning model is learned sequentially by incorporating incoming noisy observations. We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained. Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn effective model closure in multi-scale systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا