Do you want to publish a course? Click here

Delay-Coordinates Embeddings as a Data Mining Tool for Denoising Speech Signals

92   0   0.0 ( 0 )
 Added by Domenico Napoletani
 Publication date 2005
  fields Physics
and research's language is English
 Authors D. Napoletani




Ask ChatGPT about the research

In this paper we utilize techniques from the theory of non-linear dynamical systems to define a notion of embedding threshold estimators. More specifically we use delay-coordinates embeddings of sets of coefficients of the measured signal (in some chosen frame) as a data mining tool to separate structures that are likely to be generated by signals belonging to some predetermined data set. We describe a particular variation of the embedding threshold estimator implemented in a windowed Fourier frame, and we apply it to speech signals heavily corrupted with the addition of several types of white noise. Our experimental work seems to suggest that, after training on the data sets of interest,these estimators perform well for a variety of white noise processes and noise intensity levels. The method is compared, for the case of Gaussian white noise, to a block thresholding estimator.



rate research

Read More

The statistical properties of acoustic emission signals for tool condition monitoring (TCM) applications in mechanical lathe machining are analyzed in this paper. Time series data and root mean square (RMS) values at various tool wear levels are shown to exhibit features that can be put into relation with ageing in both cases. In particular, the histograms of raw data show power-law distributions above a cross-over value, in which newer cutting tools exhibit more numerous larger events compared with more worn-out ones. For practical purposes, statistics based on RMS values are more feasible, and the analysis of these also reveals discriminating age-related features. The assumption that experimental RMS histograms follow a Beta (b) distribution has also been tested. The residuals of the modeling b functions indicate that the search for a more appropriate fitting function for the experimental distribution is desirable.
Chaos is ubiquitous in physical systems. The associated sensitivity to initial conditions is a significant obstacle in forecasting the weather and other geophysical fluid flows. Data assimilation is the process whereby the uncertainty in initial conditions is reduced by the astute combination of model predictions and real-time data. This chapter reviews recent findings from investigations on the impact of chaos on data assimilation methods: for the Kalman filter and smoother in linear systems, analytic results are derived; for their ensemble-bas
Data assimilation (DA) aims at optimally merging observational data and model outputs to create a coherent statistical and dynamical picture of the system under investigation. Indeed, DA aims at minimizing the effect of observational and model error, and at distilling the correct ingredients of its dynamics. DA is of critical importance for the analysis of systems featuring sensitive dependence on the initial conditions, as chaos wins over any finitely accurate knowledge of the state of the system, even in absence of model error. Clearly, the skill of DA is guided by the properties of dynamical system under investigation, as merging optimally observational data and model outputs is harder when strong instabilities are present. In this paper we reverse the usual angle on the problem and show that it is indeed possible to use the skill of DA to infer some basic properties of the tangent space of the system, which may be hard to compute in very high-dimensional systems. Here, we focus our attention on the first Lyapunov exponent and the Kolmogorov-Sinai entropy, and perform numerical experiments on the Vissio-Lucarini 2020 model, a recently proposed generalisation of the Lorenz 1996 model that is able to describe in a simple yet meaningful way the interplay between dynamical and thermodynamical variables.
We present general algorithms to convert scattering data of linear and area detectors recorded in various scattering geometries to reciprocal space coordinates. The presented algorithms work for any goniometer configuration including popular four-circle, six-circle and kappa goniometers. We avoid the use of commonly employed approximations and therefore provide algorithms which work also for large detectors at small sample detector distances. A recipe for determining the necessary detector parameters including mostly ignored misalignments is given. The algorithms are implemented in a freely available open-source package.
167 - Alexander Glazov 2017
A method for correcting for detector smearing effects using machine learning techniques is presented. Compared to the standard approaches the method can use more than one reconstructed variable to infere the value of the unsmeared quantity on event by event basis. The method is implemented using a sequential neural network with a categorical cross entropy as the loss function. It is tested on a toy example and is shown to satisfy basic closure tests. Possible application of the method for analysis of the data from high energy physics experiments is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا