No Arabic abstract
Taxonomy is not only a fundamental form of knowledge representation, but also crucial to vast knowledge-rich applications, such as question answering and web search. Most existing taxonomy construction methods extract hypernym-hyponym entity pairs to organize a universal taxonomy. However, these generic taxonomies cannot satisfy users specific interest in certain areas and relations. Moreover, the nature of instance taxonomy treats each node as a single word, which has low semantic coverage. In this paper, we propose a method for seed-guided topical taxonomy construction, which takes a corpus and a seed taxonomy described by concept names as input, and constructs a more complete taxonomy based on users interest, wherein each node is represented by a cluster of coherent terms. Our framework, CoRel, has two modules to fulfill this goal. A relation transferring module learns and transfers the users interested relation along multiple paths to expand the seed taxonomy structure in width and depth. A concept learning module enriches the semantics of each concept node by jointly embedding the taxonomy and text. Comprehensive experiments conducted on real-world datasets show that Corel generates high-quality topical taxonomies and outperforms all the baselines significantly.
Taxonomies are of great value to many knowledge-rich applications. As the manual taxonomy curation costs enormous human effects, automatic taxonomy construction is in great demand. However, most existing automatic taxonomy construction methods can only build hypernymy taxonomies wherein each edge is limited to expressing the is-a relation. Such a restriction limits their applicability to more diverse real-world tasks where the parent-child may carry different relations. In this paper, we aim to construct a task-guided taxonomy from a domain-specific corpus and allow users to input a seed taxonomy, serving as the task guidance. We propose an expansion-based taxonomy construction framework, namely HiExpan, which automatically generates key term list from the corpus and iteratively grows the seed taxonomy. Specifically, HiExpan views all children under each taxonomy node forming a coherent set and builds the taxonomy by recursively expanding all these sets. Furthermore, HiExpan incorporates a weakly-supervised relation extraction module to extract the initial children of a newly-expanded node and adjusts the taxonomy tree by optimizing its global structure. Our experiments on three real datasets from different domains demonstrate the effectiveness of HiExpan for building task-guided taxonomies.
While most topic modeling algorithms model text corpora with unigrams, human interpretation often relies on inherent grouping of terms into phrases. As such, we consider the problem of discovering topical phrases of mixed lengths. Existing work either performs post processing to the inference results of unigram-based topic models, or utilizes complex n-gram-discovery topic models. These methods generally produce low-quality topical phrases or suffer from poor scalability on even moderately-sized datasets. We propose a different approach that is both computationally efficient and effective. Our solution combines a novel phrase mining framework to segment a document into single and multi-word phrases, and a new topic model that operates on the induced document partition. Our approach discovers high quality topical phrases with negligible extra cost to the bag-of-words topic model in a variety of datasets including research publication titles, abstracts, reviews, and news articles.
Conversational interfaces are increasingly popular as a way of connecting people to information. Corpus-based conversational interfaces are able to generate more diverse and natural responses than template-based or retrieval-based agents. With their increased generative capacity of corpusbased conversational agents comes the need to classify and filter out malevolent responses that are inappropriate in terms of content and dialogue acts. Previous studies on the topic of recognizing and classifying inappropriate content are mostly focused on a certain category of malevolence or on single sentences instead of an entire dialogue. In this paper, we define the task of Malevolent Dialogue Response Detection and Classification (MDRDC). We make three contributions to advance research on this task. First, we present a Hierarchical Malevolent Dialogue Taxonomy (HMDT). Second, we create a labelled multi-turn dialogue dataset and formulate the MDRDC task as a hierarchical classification task over this taxonomy. Third, we apply stateof-the-art text classification methods to the MDRDC task and report on extensive experiments aimed at assessing the performance of these approaches.
In many settings it is important for one to be able to understand why a model made a particular prediction. In NLP this often entails extracting snippets of an input text `responsible for corresponding model output; when such a snippet comprises tokens that indeed informed the models prediction, it is a faithful explanation. In some settings, faithfulness may be critical to ensure transparency. Lei et al. (2016) proposed a model to produce faithful rationales for neural text classification by defining independent snippet extraction and prediction modules. However, the discrete selection over input tokens performed by this method complicates training, leading to high variance and requiring careful hyperparameter tuning. We propose a simpler variant of this approach that provides faithful explanations by construction. In our scheme, named FRESH, arbitrary feature importance scores (e.g., gradients from a trained model) are used to induce binary labels over token inputs, which an extractor can be trained to predict. An independent classifier module is then trained exclusively on snippets provided by the extractor; these snippets thus constitute faithful explanations, even if the classifier is arbitrarily complex. In both automatic and manual evaluations we find that variants of this simple framework yield predictive performance superior to `end-to-end approaches, while being more general and easier to train. Code is available at https://github.com/successar/FRESH
Relation classification aims to extract semantic relations between entity pairs from the sentences. However, most existing methods can only identify seen relation classes that occurred during training. To recognize unseen relations at test time, we explore the problem of zero-shot relation classification. Previous work regards the problem as reading comprehension or textual entailment, which have to rely on artificial descriptive information to improve the understandability of relation types. Thus, rich semantic knowledge of the relation labels is ignored. In this paper, we propose a novel logic-guided semantic representation learning model for zero-shot relation classification. Our approach builds connections between seen and unseen relations via implicit and explicit semantic representations with knowledge graph embeddings and logic rules. Extensive experimental results demonstrate that our method can generalize to unseen relation types and achieve promising improvements.