No Arabic abstract
We present a new strategy for introducing population balances into full-chain constitutive models of living polymers with linear chain architectures. We provide equations to describe a range of stress relaxation processes covering both unentangled systems (Rouse-like motion) and well entangled systems (reptation, contour length fluctuations, chain retraction, and constraint release). Special attention is given to the solutions that emerge when the breaking time of the chain becomes fast compared to various stress relaxation processes. In these fast breaking limits, we reproduce previously known results (with some corrections) and also present new results for nonlinear stress relaxation dynamics. Our analysis culminates with a fully developed constitutive model for the fast breaking regime in which stress relaxation is dominated by contour length fluctuations. Linear and nonlinear rheology predictions of the model are presented and discussed.
Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(phi,tilde{sigma}$, and $mu)$, with $tilde{sigma} = sigma/sigma_0$ the dimensionless shear stress and $mu$ the coefficient of interparticle friction: the dimensional stress is $sigma$, and $sigma_0 propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or textquotedblleft jammingtextquotedblright points at volume fraction $phi_{rm J}^0 = phi_{rm rcp}$ (random close packing) for the low-stress lubricated state, and at $phi_{rm J} (mu) < phi_{rm J}^0$ for any nonzero $mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.
We investigate the chain conformation of ring polymers confined to a cylindrical nanochannel using both theoretical analysis and three dimensional Langevin dynamics simulations. We predict that the longitudinal size of a ring polymer scales with the chain length and the diameter of the channel in the same manner as that for linear chains based on scaling analysis and Flory-type theory. Moreover, Flory-type theory also gives the ratio of the longitudinal sizes for a ring polymer and a linear chain with identical chain length. These theoretical predictions are confirmed by numerical simulations. Finally, our simulation results show that this ratio first decreases and then saturates with increasing the chain stiffness, which has interpreted the discrepancy in experiments. Our results have biological significance.
We present a thermodynamically consistent constitutive model for fluid-saturated sediments, spanning dense to dilute regimes, developed from the basic balance laws for two phase-mixtures. The model can represent various limiting cases, such as pure fluid and dry grains. It is formulated to capture a number of key behaviors such as: (i) viscous inertial rheology of submerged wet grains under steady shearing flows, (ii) the critical state behavior of grains, which causes granular Reynolds dilation/contraction due to shear, (iii) the viscous thickening of the fluid response due to the presence of suspended grains, and (iv) the Darcy-like drag interaction observed in both dense and dilute mixtures, which gives rise to complex fluid-grain interactions under dilation and flow. The full constitutive model is combined with the basic equations of motion for each mixture phase and implemented in the material point method (MPM) to accurately model the coupled dynamics of the mixed system. Qualitative results show the breadth of problems which this model can address. Quantitative results demonstrate the accuracy of this model as compared with analytical limits and experimental observations of fluid and grain behaviors in inhomogeneous geometries.
We present a model for semiflexible polymers in Hamiltonian formulation which interpolates between a Rouse chain and worm-like chain. Both models are realized as limits for the parameters. The model parameters can also be chosen to match the experimental force-extension curve for double-stranded DNA. Near the ground state of the Hamiltonian, the eigenvalues for the longitudinal (stretching) and the transversal (bending) modes of a chain with N springs, indexed by p, scale as lambda_lp ~ (p/N)^2 and lambda_tp ~ p^2(p-1)^2/N^4 respectively for small p. We also show that the associated decay times tau_p ~ (N/p)^4 will not be observed if they exceed the orientational time scale tau_r ~ N^3 for an equally-long rigid rod, as the driven decay is then washed out by diffusive motion.
Fine particle suspensions (such as cornstarch mixed with water) exhibit dramatic changes in viscosity when sheared, producing fascinating behaviors that captivate children and rheologists alike. Recent examination of these mixtures in simple flow geometries suggests inter-granular repulsion is central to this effect --- for mixtures at rest or shearing slowly, repulsion prevents frictional contacts from forming between particles, whereas, when sheared more forcefully, granular stresses overcome the repulsion allowing particles to interact frictionally and form microscopic structures that resist flow. Previous constitutive studies of these mixtures have focused on particular cases, typically limited to two-dimensional, steady, simple shearing flows. In this work, we introduce a predictive and general, three-dimensional continuum model for this material, using mixture theory to couple the fluid and particle phases. Playing a central role in the model, we introduce a micro-structural state variable, whose evolution is deduced from small-scale physical arguments and checked with existing data. Our space- and time-dependent model is implemented numerically in a variety of unsteady, non-uniform flow configurations where it is shown to accurately capture a variety of key behaviors: (i) the continuous shear thickening (CST) and discontinuous shear thickening (DST) behavior observed in steady flows, (ii) the time-dependent propagation of `shear jamming fronts, (iii) the time-dependent propagation of `impact activated jamming fronts, and (iv) the non-Newtonian, `running on oobleck effect wherein fast locomotors stay afloat while slow ones sink.