Do you want to publish a course? Click here

A general constitutive model for dense, fine particle suspensions validated in many geometries

70   0   0.0 ( 0 )
 Added by Aaron Baumgarten
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fine particle suspensions (such as cornstarch mixed with water) exhibit dramatic changes in viscosity when sheared, producing fascinating behaviors that captivate children and rheologists alike. Recent examination of these mixtures in simple flow geometries suggests inter-granular repulsion is central to this effect --- for mixtures at rest or shearing slowly, repulsion prevents frictional contacts from forming between particles, whereas, when sheared more forcefully, granular stresses overcome the repulsion allowing particles to interact frictionally and form microscopic structures that resist flow. Previous constitutive studies of these mixtures have focused on particular cases, typically limited to two-dimensional, steady, simple shearing flows. In this work, we introduce a predictive and general, three-dimensional continuum model for this material, using mixture theory to couple the fluid and particle phases. Playing a central role in the model, we introduce a micro-structural state variable, whose evolution is deduced from small-scale physical arguments and checked with existing data. Our space- and time-dependent model is implemented numerically in a variety of unsteady, non-uniform flow configurations where it is shown to accurately capture a variety of key behaviors: (i) the continuous shear thickening (CST) and discontinuous shear thickening (DST) behavior observed in steady flows, (ii) the time-dependent propagation of `shear jamming fronts, (iii) the time-dependent propagation of `impact activated jamming fronts, and (iv) the non-Newtonian, `running on oobleck effect wherein fast locomotors stay afloat while slow ones sink.



rate research

Read More

Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(phi,tilde{sigma}$, and $mu)$, with $tilde{sigma} = sigma/sigma_0$ the dimensionless shear stress and $mu$ the coefficient of interparticle friction: the dimensional stress is $sigma$, and $sigma_0 propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or textquotedblleft jammingtextquotedblright points at volume fraction $phi_{rm J}^0 = phi_{rm rcp}$ (random close packing) for the low-stress lubricated state, and at $phi_{rm J} (mu) < phi_{rm J}^0$ for any nonzero $mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.
We present a thermodynamically consistent constitutive model for fluid-saturated sediments, spanning dense to dilute regimes, developed from the basic balance laws for two phase-mixtures. The model can represent various limiting cases, such as pure fluid and dry grains. It is formulated to capture a number of key behaviors such as: (i) viscous inertial rheology of submerged wet grains under steady shearing flows, (ii) the critical state behavior of grains, which causes granular Reynolds dilation/contraction due to shear, (iii) the viscous thickening of the fluid response due to the presence of suspended grains, and (iv) the Darcy-like drag interaction observed in both dense and dilute mixtures, which gives rise to complex fluid-grain interactions under dilation and flow. The full constitutive model is combined with the basic equations of motion for each mixture phase and implemented in the material point method (MPM) to accurately model the coupled dynamics of the mixed system. Qualitative results show the breadth of problems which this model can address. Quantitative results demonstrate the accuracy of this model as compared with analytical limits and experimental observations of fluid and grain behaviors in inhomogeneous geometries.
We study the fronts that appear when a shear-thickening suspension is submitted to a sudden driving force at a boundary. Using a quasi-one-dimensional experimental geometry, we extract the front shape and the propagation speed from the suspension flow field and map out their dependence on applied shear. We find that the relation between stress and velocity is quadratic, as is generally true for inertial effects in liquids, but with a pre-factor that can be much larger than the material density. We show that these experimental findings can be explained by an extension of the Wyart-Cates model, which was originally developed to describe steady-state shear-thickening. This is achieved by introducing a sole additional parameter: the characteristic strain scale that controls the crossover from start-up response to steady-state behavior. The theoretical framework we obtain unifies both transient and steady-state properties of shear-thickening materials.
150 - Zhouyang Ge , Luca Brandt 2020
We describe and summarize a class of minimal numerical models emerged from recent development of simulation methods for dense particle suspensions in overdamped linear flows. The main ingredients include (i) a frame-invariant, short-range lubrication model for spherical particles, and (ii) a soft-core, stick/slide frictional contact model activated when particles overlap. We implement a version of the model using a modified velocity-Verlet algorithm that explicitly solves the $N$-body dynamical system in $mathcal{O}(cN)$ operations, where $c$ is a kernel constant depending on the cutoff of particle interactions. The implementation is validated against literature results on jamming transition and shear thickening suspensions from 40% to 64% volume fractions. Potential strategies to extend the present methodology to non-spherical particles are also suggested for very concentrated suspensions.
The presence and the microscopic origin of normal stress differences in dense suspensions under simple shear flows are investigated by means of inertialess particle dynamics simulations, taking into account hydrodynamic lubrication and frictional contact forces. The synergic action of hydrodynamic and contact forces between the suspended particles is found to be the origin of negative contributions to the first normal stress difference $N_1$, whereas positive values of $N_1$ observed at higher volume fractions near jamming are due to effects that cannot be accounted for in the hard-sphere limit. Furthermore, we found that the stress anisotropy induced by the planarity of the simple shear flow vanishes as the volume fraction approaches the jamming point for frictionless particles, while it remains finite for the case of frictional particles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا