Do you want to publish a course? Click here

A constitutive model for simple shear of dense frictional suspensions

79   0   0.0 ( 0 )
 Added by Abhinendra Singh
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(phi,tilde{sigma}$, and $mu)$, with $tilde{sigma} = sigma/sigma_0$ the dimensionless shear stress and $mu$ the coefficient of interparticle friction: the dimensional stress is $sigma$, and $sigma_0 propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or textquotedblleft jammingtextquotedblright points at volume fraction $phi_{rm J}^0 = phi_{rm rcp}$ (random close packing) for the low-stress lubricated state, and at $phi_{rm J} (mu) < phi_{rm J}^0$ for any nonzero $mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.



rate research

Read More

We study the fronts that appear when a shear-thickening suspension is submitted to a sudden driving force at a boundary. Using a quasi-one-dimensional experimental geometry, we extract the front shape and the propagation speed from the suspension flow field and map out their dependence on applied shear. We find that the relation between stress and velocity is quadratic, as is generally true for inertial effects in liquids, but with a pre-factor that can be much larger than the material density. We show that these experimental findings can be explained by an extension of the Wyart-Cates model, which was originally developed to describe steady-state shear-thickening. This is achieved by introducing a sole additional parameter: the characteristic strain scale that controls the crossover from start-up response to steady-state behavior. The theoretical framework we obtain unifies both transient and steady-state properties of shear-thickening materials.
Fine particle suspensions (such as cornstarch mixed with water) exhibit dramatic changes in viscosity when sheared, producing fascinating behaviors that captivate children and rheologists alike. Recent examination of these mixtures in simple flow geometries suggests inter-granular repulsion is central to this effect --- for mixtures at rest or shearing slowly, repulsion prevents frictional contacts from forming between particles, whereas, when sheared more forcefully, granular stresses overcome the repulsion allowing particles to interact frictionally and form microscopic structures that resist flow. Previous constitutive studies of these mixtures have focused on particular cases, typically limited to two-dimensional, steady, simple shearing flows. In this work, we introduce a predictive and general, three-dimensional continuum model for this material, using mixture theory to couple the fluid and particle phases. Playing a central role in the model, we introduce a micro-structural state variable, whose evolution is deduced from small-scale physical arguments and checked with existing data. Our space- and time-dependent model is implemented numerically in a variety of unsteady, non-uniform flow configurations where it is shown to accurately capture a variety of key behaviors: (i) the continuous shear thickening (CST) and discontinuous shear thickening (DST) behavior observed in steady flows, (ii) the time-dependent propagation of `shear jamming fronts, (iii) the time-dependent propagation of `impact activated jamming fronts, and (iv) the non-Newtonian, `running on oobleck effect wherein fast locomotors stay afloat while slow ones sink.
Discontinuous shear thickening (DST) observed in many dense athermal suspensions has proven difficult to understand and to reproduce by numerical simulation. By introducing a numerical scheme including both relevant hydrodynamic interactions and granularlike contacts, we show that contact friction is essential for having DST. Above a critical volume fraction, we observe the existence of two states: a low viscosity, contactless (hence, frictionless) state, and a high viscosity frictional shear jammed state. These two states are separated by a critical shear stress, associated with a critical shear rate where DST occurs. The shear jammed state is reminiscent of the jamming phase of granular matter. Continuous shear thickening is seen as a lower volume fraction vestige of the jamming transition.
Colloidal shear thickening presents a significant challenge because the macroscopic rheology becomes increasingly controlled by the microscopic details of short ranged particle interactions in the shear thickening regime. Our measurements here of the first normal stress difference over a wide range of particle volume fraction elucidate the relative contributions from hydrodynamic lubrication and frictional contact forces, which have been debated. At moderate volume fractions we find $N_1<0$, consistent with hydrodynamic models, however at higher volume fractions and shear stresses these models break down and we instead observe dilation ($N_1>0$), indicating frictional contact networks. Remarkably, there is no signature of this transition in the viscosity, instead this change in the sign of $N_1$ occurs while the shear thickening remains continuous. These results suggest a scenario where shear thickening is driven primarily by the formation of frictional contacts, with hydrodynamic forces playing a supporting role at lower concentrations. Motivated by this picture, we introduce a simple model which combines these frictional and hydrodynamic contributions and accurately fits the measured viscosity over a wide range of particle volume fraction and shear stress.
Particles suspended in a Newtonian fluid raise the viscosity and also generally give rise to a shear-rate dependent rheology. In particular, pronounced shear thickening may be observed at large solid volume fractions. In a recent article (R. Seto, R. Mari, J. F. Morris, and M. M. Denn., Phys. Rev. Lett., 111:218301, 2013) we have considered the minimum set of components to reproduce the experimentally observed shear thickening behavior, including Discontinuous Shear Thickening (DST). We have found frictional contact forces to be essential, and were able to reproduce the experimental behavior by a simulation including this physical ingredient along with viscous lubrication. In the present article, we thoroughly investigate the effect of friction and express it in the framework of the jamming transition. The viscosity divergence at the jamming transition has been a well known phenomenon in suspension rheology, as reflected in many empirical laws for the viscosity. Friction can affect this divergence, and in particular the jamming packing fraction is reduced if particles are frictional. Within the physical description proposed here, shear thickening is a direct consequence of this effect: as the shear rate increases, friction is increasingly incorporated as more contacts form, leading to a transition from a mostly frictionless to a mostly frictional rheology. This result is significant because it shifts the emphasis from lubrication hydrodynamics and detailed microscopic interactions to geometry and steric constraints close to the jamming transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا