No Arabic abstract
The social percolation model citep{solomon-et-00} considers a 2-dimensional regular lattice. Each site is occupied by an agent with a preference $x_{i}$ sampled from a uniform distribution $U[0,1]$. Agents transfer the information about the quality $q$ of a movie to their neighbors only if $x_{i}leq q$. Information percolates through the lattice if $q=q_{c}=0.593$. -- From a network perspective the percolating cluster can be seen as a random-regular network with $n_{c}$ nodes and a mean degree that depends on $q_{c}$. Preserving these quantities of the random-regular network, a true random network can be generated from the $G(n,p)$ model after determining the link probability $p$. I then demonstrate how this random network can be transformed into a threshold network, where agents create links dependent on their $x_{i}$ values. Assuming a dynamics of the $x_{i}$ and a mechanism of group formation, I further extend the model toward an adaptive social network model.
Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.
We propose a model of mobile agents to construct social networks, based on a system of moving particles by keeping track of the collisions during their permanence in the system. We reproduce not only the degree distribution, clustering coefficient and shortest path length of a large data base of empirical friendship networks recently collected, but also some features related with their community structure. The model is completely characterized by the collision rate and above a critical collision rate we find the emergence of a giant cluster in the universality class of two-dimensional percolation. Moreover, we propose possible schemes to reproduce other networks of particular social contacts, namely sexual contacts.
We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrats law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008)]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
Percolation theory is an approach to study vulnerability of a system. We develop analytical framework and analyze percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of $n$ classic ErdH{o}s-R{e}nyi (ER) networks, where each network depends on the same number $m$ of other networks, i.e., a random regular network of interdependent ER networks. In contrast to a emph{treelike} NetONet in which the size of the largest connected cluster (mutual component) depends on $n$, the loops in the RR NetONet cause the largest connected cluster to depend only on $m$. We also analyzed the extremely vulnerable feedback condition of coupling. In the case of ER networks, the NetONet only exhibits two phases, a second order phase transition and collapse, and there is no first phase transition regime unlike the no feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when $q$ is large and second order phase transition when $q$ is small. Our results can help in designing robust interdependent systems.
Real data show that interdependent networks usually involve inter-similarity. Intersimilarity means that a pair of interdependent nodes have neighbors in both networks that are also interdependent (Parshani et al cite{PAR10B}). For example, the coupled world wide port network and the global airport network are intersimilar since many pairs of linked nodes (neighboring cities), by direct flights and direct shipping lines exist in both networks. Nodes in both networks in the same city are regarded as interdependent. If two neighboring nodes in one network depend on neighboring nodes in the another we call these links common links. The fraction of common links in the system is a measure of intersimilarity. Previous simulation results suggest that intersimilarity has considerable effect on reducing the cascading failures, however, a theoretical understanding on this effect on the cascading process is currently missing. Here, we map the cascading process with inter-similarity to a percolation of networks composed of components of common links and non common links. This transforms the percolation of inter-similar system to a regular percolation on a series of subnetworks, which can be solved analytically. We apply our analysis to the case where the network of common links is an ErdH{o}s-R{e}nyi (ER) network with the average degree $K$, and the two networks of non-common links are also ER networks. We show for a fully coupled pair of ER networks, that for any $Kgeq0$, although the cascade is reduced with increasing $K$, the phase transition is still discontinuous. Our analysis can be generalized to any kind of interdependent random networks system.