Do you want to publish a course? Click here

A system of mobile agents to model social networks

153   0   0.0 ( 0 )
 Added by Marta Gonzalez
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a model of mobile agents to construct social networks, based on a system of moving particles by keeping track of the collisions during their permanence in the system. We reproduce not only the degree distribution, clustering coefficient and shortest path length of a large data base of empirical friendship networks recently collected, but also some features related with their community structure. The model is completely characterized by the collision rate and above a critical collision rate we find the emergence of a giant cluster in the universality class of two-dimensional percolation. Moreover, we propose possible schemes to reproduce other networks of particular social contacts, namely sexual contacts.



rate research

Read More

We present a novel model to simulate real social networks of complex interactions, based in a granular system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to granular systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.
Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the basic physics of transportation on mobile networks. Of particular interest are the dependence of the throughput on the speed of agent movement and communication range. Our computations reveal a hierarchical dependence for the former while, for the latter, we find an algebraic power law between the throughput and the communication range with an exponent determined by the speed. We develop a physical theory based on the Fokker-Planck equation to explain these phenomena. Our findings provide insights into complex transportation dynamics arising commonly in natural and engineering systems.
175 - Frank Schweitzer 2020
The social percolation model citep{solomon-et-00} considers a 2-dimensional regular lattice. Each site is occupied by an agent with a preference $x_{i}$ sampled from a uniform distribution $U[0,1]$. Agents transfer the information about the quality $q$ of a movie to their neighbors only if $x_{i}leq q$. Information percolates through the lattice if $q=q_{c}=0.593$. -- From a network perspective the percolating cluster can be seen as a random-regular network with $n_{c}$ nodes and a mean degree that depends on $q_{c}$. Preserving these quantities of the random-regular network, a true random network can be generated from the $G(n,p)$ model after determining the link probability $p$. I then demonstrate how this random network can be transformed into a threshold network, where agents create links dependent on their $x_{i}$ values. Assuming a dynamics of the $x_{i}$ and a mechanism of group formation, I further extend the model toward an adaptive social network model.
We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrats law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008)]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا