No Arabic abstract
We present a detailed $^{31}$P nuclear magnetic resonance (NMR) study of the molecular rotation in the compound [Cu(pz)$_{2}$(2-HOpy)$_{2}$](PF$_{6}$)$_{2}$, where pz = C$_4$H$_4$N$_2$ and 2-HOpy = C$_5$H$_4$NHO. Here, a freezing of the PF$_6$ rotation modes is revealed by several steplike increases of the temperature-dependent second spectral moment, with accompanying broad peaks of the longitudinal and transverse nuclear spin-relaxation rates. An analysis based on the Bloembergen-Purcell-Pound (BPP) theory quantifies the related activation energies as $E_{a}/k_{B}$ = 250 and 1400 K. Further, the anisotropy of the second spectral moment of the $^{31}$P absorption line was calculated for the rigid lattice, as well as in the presence of several sets of PF$_6$ reorientation modes, and is in excellent agreement with the experimental data. Whereas the anisotropy of the frequency shift and enhancement of nuclear spin-relaxation rates is driven by the molecular rotation with respect to the dipole fields stemming from the Cu ions, the second spectral moment is determined by the intramolecular interaction of nuclear $^{19}$F and $^{31}$P moments in the presence of the distinct rotation modes.
We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of SrFe2As2. The NMR spectra clearly show sharp first-order antiferromagnetic (AF) and structural transitions occurring simultaneously. The behavior in the vicinity of the transition is compared with our previous study on BaFe2As2. No significant difference was observed in the temperature dependence of the static quantities such as the AF splitting and electric quadrupole splitting. However, the results of the NMR relaxation rate revealed difference in the dynamical spin fluctuations. The stripe-type AF fluctuations in the paramagnetic state appear to be more anisotropic in BaFe2As2 than in SrFe2As2.
Two-dimensional layered semiconductor black phosphorus (BP), a promising pressure induced Dirac system as predicted by band structure calculations, has been studied by $^{31}$P-nuclear magnetic resonance. Band calculations have been also carried out to estimate the density of states $D(E)$. The temperature and pressure dependences of nuclear spin lattice relaxation rate $1/T_1$ in the semiconducting phase are well reproduced using the derived $D(E)$, and the resultant pressure dependence of semiconducting gap is in good accordance with previous reports, giving a good confirmation that the band calculation on BP is fairly reliable. The present analysis of $1/T_1$ data with the complemental theoretical calculations allows us to extract essential information, such as the pressure dependences of $D(E)$ and chemical potential, as well as to decompose observed $1/T_1$ into intrinsic and extrinsic contributions. An abrupt increase in $1/T_1$ at 1.63GPa indicates that the semiconducting gap closes, resulting in an enhancement of conductivity.
Detailed ${}^{31}$P nuclear magnetic resonance (NMR) measurements are presented on well-characterized single crystals of antiferromagnetic van der Waals Ni$_2$P$_2$S$_6$. An anomalous breakdown is observed in the proportionality of the NMR shift $K$ with the bulk susceptibility $chi$. This so-called $K$$-$$chi$ anomaly occurs in close proximity to the broad peak in $chi(T)$, thereby implying a connection to quasi-2D magnetic correlations known to be responsible for this maximum. Quantum chemistry calculations show that crystal field energy level depopulation effects cannot be responsible for the $K$$-$$chi$ anomaly. Appreciable in-plane transferred hyperfine coupling is observed, which is consistent with the proposed Ni$-$S$-$Ni super- and Ni$-$S$-$S$-$Ni super-super-exchange coupling mechanisms. Magnetization and spin$-$lattice relaxation rate ($T_1^{-1}$) measurements indicate little to no magnetic field dependence of the Neel temperature. Finally, $T_1^{-1}(T)$ evidences relaxation driven by three-magnon scattering in the antiferromagnetic state.
The antiperovskite-related nitride Cr$_3$GeN forms a tetragonal structure with the space group $Pbar{4}2_1m$ at room temperature. It shows a tetragonal ($Pbar{4}2_1m$) to tetragonal ($I4/mcm$) structural transition with a large hysteresis at 300--400 K. The magnetic susceptibility of Cr$_3$GeN shows Curie-Weiss type temperature dependence at high temperature, but is almost temperature-independent below room temperature. We carried out $mu$SR and $^{14}$N-NMR microscopy measurements to reveal the magnetic ground state of Cr$_3$GeN. Gradual muon spin relaxation, which is nearly temperature-independent below room temperature, was observed, indicating that Cr$_3$GeN is magnetically inactive. In the $^{14}$N-NMR measurement, a quadrupole-split spectrum was obtained at around $^{14}K = 0$. The temperature dependence of $^{14}(1/T_1)$ satisfies the Korringa relation. These experimental results indicate that the ground state of Cr$_3$GeN is Pauli paramagnetic, without antiferromagnetic long-range order.
We report $^{31}$P NMR measurements under various magnetic fields up to 7 T for the intermediate valence compound EuNi$_2$P$_2$, which shows heavy electronic states at low temperatures. In the high-temperature region above 40 K, the Knight shift followed the Curie--Weiss law reflecting localized $4f$ states. In addition, the behavior corresponding to the temperature variation of the average valence of Eu was observed in the nuclear spin-lattice relaxation rate $1/T_1$. With the occurrence of the Kondo effect, $1/T_1$ was clearly reduced below 40 K, and the Knight shift becomes almost constant at low temperatures. From these results, the formation of heavy quasiparticles by the hybridization of Eu $4f$ electrons and conduction electrons was clarified from microscopic viewpoints. Furthermore, a characteristic spin fluctuation was observed at low temperatures, which would be associated with valence fluctuations caused by the intermediate valence state of EuNi$_2$P$_2$.