Do you want to publish a course? Click here

Toward Cross-Lingual Definition Generation for Language Learners

69   0   0.0 ( 0 )
 Added by Cunliang Kong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Generating dictionary definitions automatically can prove useful for language learners. However, its still a challenging task of cross-lingual definition generation. In this work, we propose to generate definitions in English for words in various languages. To achieve this, we present a simple yet effective approach based on publicly available pretrained language models. In this approach, models can be directly applied to other languages after trained on the English dataset. We demonstrate the effectiveness of this approach on zero-shot definition generation. Experiments and manual analyses on newly constructed datasets show that our models have a strong cross-lingual transfer ability and can generate fluent English definitions for Chinese words. We further measure the lexical complexity of generated and reference definitions. The results show that the generated definitions are much simpler, which is more suitable for language learners.



rate research

Read More

Despite the recent advancement in NLP research, cross-lingual transfer for natural language generation is relatively understudied. In this work, we transfer supervision from high resource language (HRL) to multiple low-resource languages (LRLs) for natural language generation (NLG). We consider four NLG tasks (text summarization, question generation, news headline generation, and distractor generation) and three syntactically diverse languages, i.e., English, Hindi, and Japanese. We propose an unsupervised cross-lingual language generation framework (called ZmBART) that does not use any parallel or pseudo-parallel/back-translated data. In this framework, we further pre-train mBART sequence-to-sequence denoising auto-encoder model with an auxiliary task using monolingual data of three languages. The objective function of the auxiliary task is close to the target tasks which enriches the multi-lingual latent representation of mBART and provides good initialization for target tasks. Then, this model is fine-tuned with task-specific supervised English data and directly evaluated with low-resource languages in the Zero-shot setting. To overcome catastrophic forgetting and spurious correlation issues, we applied freezing model component and data argumentation approaches respectively. This simple modeling approach gave us promising results.We experimented with few-shot training (with 1000 supervised data points) which boosted the model performance further. We performed several ablations and cross-lingual transferability analyses to demonstrate the robustness of ZmBART.
Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding. In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining. We propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI, our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation, we obtain 34.3 BLEU on WMT16 German-English, improving the previous state of the art by more than 9 BLEU. On supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT16 Romanian-English, outperforming the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available.
Commanding a robot to navigate with natural language instructions is a long-term goal for grounded language understanding and robotics. But the dominant language is English, according to previous studies on vision-language navigation (VLN). To go beyond English and serve people speaking different languages, we collect a bilingual Room-to-Room (BL-R2R) dataset, extending the original benchmark with new Chinese instructions. Based on this newly introduced dataset, we study how an agent can be trained on existing English instructions but navigate effectively with another language under a zero-shot learning scenario. Without any training data of the target language, our model shows competitive results even compared to a model with full access to the target language training data. Moreover, we investigate the transferring ability of our model when given a certain amount of target language training data.
111 - Fuli Luo , Wei Wang , Jiahao Liu 2020
Existing work in multilingual pretraining has demonstrated the potential of cross-lingual transferability by training a unified Transformer encoder for multiple languages. However, much of this work only relies on the shared vocabulary and bilingual contexts to encourage the correlation across languages, which is loose and implicit for aligning the contextual representations between languages. In this paper, we plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages. It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language. More importantly, when fine-tuning on downstream tasks, the cross-attention module can be plugged in or out on-demand, thus naturally benefiting a wider range of cross-lingual tasks, from language understanding to generation. As a result, the proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark, covering text classification, sequence labeling, question answering, and sentence retrieval. For cross-lingual generation tasks, it also outperforms all existing cross-lingual models and state-of-the-art Transformer variants on WMT14 English-to-German and English-to-French translation datasets, with gains of up to 1~2 BLEU.
Automatic question generation (QG) is a challenging problem in natural language understanding. QG systems are typically built assuming access to a large number of training instances where each instance is a question and its corresponding answer. For a new language, such training instances are hard to obtain making the QG problem even more challenging. Using this as our motivation, we study the reuse of an available large QG dataset in a secondary language (e.g. English) to learn a QG model for a primary language (e.g. Hindi) of interest. For the primary language, we assume access to a large amount of monolingual text but only a small QG dataset. We propose a cross-lingual QG model which uses the following training regime: (i) Unsupervised pretraining of language models in both primary and secondary languages and (ii) joint supervised training for QG in both languages. We demonstrate the efficacy of our proposed approach using two different primary languages, Hindi and Chinese. We also create and release a new question answering dataset for Hindi consisting of 6555 sentences.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا