Do you want to publish a course? Click here

ZmBART: An Unsupervised Cross-lingual Transfer Framework for Language Generation

91   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite the recent advancement in NLP research, cross-lingual transfer for natural language generation is relatively understudied. In this work, we transfer supervision from high resource language (HRL) to multiple low-resource languages (LRLs) for natural language generation (NLG). We consider four NLG tasks (text summarization, question generation, news headline generation, and distractor generation) and three syntactically diverse languages, i.e., English, Hindi, and Japanese. We propose an unsupervised cross-lingual language generation framework (called ZmBART) that does not use any parallel or pseudo-parallel/back-translated data. In this framework, we further pre-train mBART sequence-to-sequence denoising auto-encoder model with an auxiliary task using monolingual data of three languages. The objective function of the auxiliary task is close to the target tasks which enriches the multi-lingual latent representation of mBART and provides good initialization for target tasks. Then, this model is fine-tuned with task-specific supervised English data and directly evaluated with low-resource languages in the Zero-shot setting. To overcome catastrophic forgetting and spurious correlation issues, we applied freezing model component and data argumentation approaches respectively. This simple modeling approach gave us promising results.We experimented with few-shot training (with 1000 supervised data points) which boosted the model performance further. We performed several ablations and cross-lingual transferability analyses to demonstrate the robustness of ZmBART.



rate research

Read More

Generating dictionary definitions automatically can prove useful for language learners. However, its still a challenging task of cross-lingual definition generation. In this work, we propose to generate definitions in English for words in various languages. To achieve this, we present a simple yet effective approach based on publicly available pretrained language models. In this approach, models can be directly applied to other languages after trained on the English dataset. We demonstrate the effectiveness of this approach on zero-shot definition generation. Experiments and manual analyses on newly constructed datasets show that our models have a strong cross-lingual transfer ability and can generate fluent English definitions for Chinese words. We further measure the lexical complexity of generated and reference definitions. The results show that the generated definitions are much simpler, which is more suitable for language learners.
85 - Zewen Chi , Li Dong , Furu Wei 2020
In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm.
191 - Dian Yu , Taiqi He , Kenji Sagae 2021
Cross-lingual language tasks typically require a substantial amount of annotated data or parallel translation data. We explore whether language representations that capture relationships among languages can be learned and subsequently leveraged in cross-lingual tasks without the use of parallel data. We generate dense embeddings for 29 languages using a denoising autoencoder, and evaluate the embeddings using the World Atlas of Language Structures (WALS) and two extrinsic tasks in a zero-shot setting: cross-lingual dependency parsing and cross-lingual natural language inference.
The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml
In cross-lingual text classification, it is required that task-specific training data in high-resource source languages are available, where the task is identical to that of a low-resource target language. However, collecting such training data can be infeasible because of the labeling cost, task characteristics, and privacy concerns. This paper proposes an alternative solution that uses only task-independent word embeddings of high-resource languages and bilingual dictionaries. First, we construct a dictionary-based heterogeneous graph (DHG) from bilingual dictionaries. This opens the possibility to use graph neural networks for cross-lingual transfer. The remaining challenge is the heterogeneity of DHG because multiple languages are considered. To address this challenge, we propose dictionary-based heterogeneous graph neural network (DHGNet) that effectively handles the heterogeneity of DHG by two-step aggregations, which are word-level and language-level aggregations. Experimental results demonstrate that our method outperforms pretrained models even though it does not access to large corpora. Furthermore, it can perform well even though dictionaries contain many incorrect translations. Its robustness allows the usage of a wider range of dictionaries such as an automatically constructed dictionary and crowdsourced dictionary, which are convenient for real-world applications.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا