No Arabic abstract
The present work introduces new scalar and fermionic degrees of freedom to the Standard Model. While the scalar sector is augmented by a complex scalar triplet and a doubly charged scalar singlet, the fermionic sector is extended by two copies of vector-like leptons. Of these, one copy is an $SU(2)_L$ singlet while the other, an $SU(2)_L$ doublet. We explain how this combination can pose a solution to the muon g-2 anomaly and also lead to non-zero neutrino masses. In addition, it is also shown that the parameter regions compliant with the two aforementioned issues can stabilise the electroweak vacuum till the Planck scale, something not possible within the Standard Model alone.
The present work introduces two possible extensions of the Standard Model Higgs sector. In the first case, the Zee-Babu type model for the generation of neutrino mass is augmented with a scalar triplet and additional singly charged scalar singlets. The second scenario, on the other hand, generalizes the Type-II seesaw model by replicating the number of the scalar triplets. A $mathbb{Z}_3$ symmetry is imposed in case of both the scenarios, but, allowed to be violated by terms of mass dimension two and three for generating neutrino masses and mixings. We examine how the models so introduced can explain the experimental observation on the muon anomalous magnetic moment. We estimate the two-loop contribution to neutrino mass induced by the scalar triplet, in addition to what comes from the doubly charged singlet in the usual Zee-Babu framework, in the first model. On the other hand, the neutrino mass arises in the usual Type-II fashion in the second model. In addition, the role of the $mathbb{Z}_3$ symmetry in suppressing lepton flavor violation is also elucidated.
The deviation of the measured value of the muon anomalous magnetic moment from the standard model prediction can be completely explained by mixing of the muon with extra vectorlike leptons, L and E, near the electroweak scale. This mixing simultaneously contributes to the muon mass. We show that the correlation between contributions to the muon mass and muon g-2 is controlled by the mass of the neutrino originating from the doublet L. Positive correlation, simultaneously explaining both measured values, requires this mass below 200 GeV. The decay rate of the Higgs boson to muon pairs is modified and, in the region of the parameter space that can explain the muon anomalous magnetic moment within one standard deviation, it ranges from 0.5 to 24 times the standard model prediction. In the same scenario, $h to gamma gamma$ can be enhanced or lowered by ~50% from the standard model prediction. The explanation of the muon g-2 anomaly and predictions for $h to gamma gamma$ are not correlated since these are controlled by independent parameters. This scenario can be embedded in a model with three complete vectorlike families featuring gauge coupling unification, sufficiently stable proton, and the Higgs quartic coupling remaining positive all the way to the grand unification scale.
We study the Higgs boson mass and the muon anomalous magnetic moment (the muon $g-2$) in a supersymmetric standard model with vector-like generations. The infrared physics of the model is governed by strong renormalization-group effects of the gauge couplings. That leads to sizable extra Yukawa couplings of Higgs doublets between the second and vector-like generations in both quark and lepton sectors. It is found with this property that there exist wide parameter regions where the Higgs boson mass and the muon $g-2$ are simultaneously explained.
The mixing of new vectorlike leptons with leptons in the standard model can generate flavor violating couplings of $h$, $W$ and $Z$ between heavy and light leptons. Focusing on the couplings of the muon, the partial decay width of $hto e_4^pm mu^mp$, where $e_4$ is the new lepton, can be significant when this process is kinematically allowed. Subsequent decays $e_4^pm to Zmu^pm$ and $e_4^pm to W^pm u$ lead to the same final states as $h to ZZ^* to Z mu^+mu^-$ and $h to WW^* to W mu u$, thus possibly affecting measurements of these processes. We calculate $hto e_4 ell_i to Zell_iell_j$, where $ell_{i,j}$ are standard model leptons, including the possibility of off-shell decays, interference with $hto ZZ^* to Z ell_i ell_i$, and the mass effect of $ell_{i,j}$ which are important when the mass of $e_4$ is close to the mass of the Higgs boson. We derive constraints on masses and couplings of the heavy lepton from the measurement of $hto 4ell$. We focus on the couplings of the muon and discuss possible effects on $hto ZZ^*$ from the region of parameters that can explain the anomaly in the measurement of the muon g-2.
We examined the influence of additional scalar doublet on the parameter space of the Standard Model supplemented with a generation of new vector like leptons. In particular we identified the viable regions of parameter space by inspecting various constraints especially electroweak precision (S, T and U) parameters. We demonstrated that the additional scalar assists in alleviating the tension of electroweak precision constraints and thus permitting larger Yukawa mixing and mass splittings among vector like species. We also compared and contrasted the regions of parameter space pertaining to the latest LHC Higgs to diphoton channel results in this scenario with vector like leptons in single Higgs doublet and pure two Higgs doublet model case.