Do you want to publish a course? Click here

Vector like leptons with extended Higgs sector

419   0   0.0 ( 0 )
 Added by Sumit Kumar Garg
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We examined the influence of additional scalar doublet on the parameter space of the Standard Model supplemented with a generation of new vector like leptons. In particular we identified the viable regions of parameter space by inspecting various constraints especially electroweak precision (S, T and U) parameters. We demonstrated that the additional scalar assists in alleviating the tension of electroweak precision constraints and thus permitting larger Yukawa mixing and mass splittings among vector like species. We also compared and contrasted the regions of parameter space pertaining to the latest LHC Higgs to diphoton channel results in this scenario with vector like leptons in single Higgs doublet and pure two Higgs doublet model case.



rate research

Read More

We investigate the viability of electroweak baryogenesis in a model with a first order electroweak phase transition induced by the addition of two gauge singlet scalars. A vector-like lepton doublet is introduced in order to provide CP violating interactions with the singlets and Standard Model leptons, and the asymmetry generation dynamics are examined using the vacuum expectation value insertion approximation. We find that such a model is readily capable of generating sufficient baryon asymmetry while satisfying electron electric dipole moment and collider phenomenology constraints.
We investigate collider signatures of standard model extensions featuring vector-like leptons and a flavorful scalar sector. Such a framework arises naturally within asymptotically safe model building, which tames the UV behavior of the standard model towards the Planck scale and beyond. We focus on values of Yukawa couplings and masses which allow to explain the present data on the muon and electron anomalous magnetic moments. Using a CMS search based on $77.4 , rm{fb}^{-1}$ at the $sqrt{s}=13$ TeV LHC we find that flavorful vector-like leptons are excluded for masses below around $300$ GeV if they are singlets under $SU(2)_L$, and around $800$ GeV if they are doublets. Exploiting the flavor-violating-like decays of the scalars, we design novel null test observables based on opposite sign opposite flavor invariant masses. These multi-lepton distributions allow to signal new physics and to extract mass hierarchies in reach of near-future searches at the LHC and the HL-LHC.
We study a supersymmetric extension of the vector-like lepton scenario, such that the vacuum instability induced by large lepton Yukawa couplings is lifted by the presence of superpartners at or below the TeV scale. In order to preserve the unification of gauge couplings, we introduce a full 16+bar{16} of SO(10), and determine the maximal possible values for the Yukawa couplings consistent with perturbativity at the GUT scale. We find that the Higgs to diphoton decay rate can be enhanced by up to 50% while maintaining vacuum stability and keeping the new particle masses above 100 GeV, while larger enhancements are possible if the masses of the new particles are lowered further.
An evidence for a diphoton resonance at a mass of 750 GeV has been observed in the data collected at the LHC run at a center of mass energy of 13 TeV. We explore several interpretations of this signal in terms of Higgs-like resonances in a two-Higgs doublet model and its supersymmetric incarnation, in which the heavier CP-even and CP-odd states present in the model are produced in gluon fusion and decay into two photons through top quark loops. We show that one cannot accommodate the observed signal in the minim
121 - Nabarun Chakrabarty 2020
The present work introduces new scalar and fermionic degrees of freedom to the Standard Model. While the scalar sector is augmented by a complex scalar triplet and a doubly charged scalar singlet, the fermionic sector is extended by two copies of vector-like leptons. Of these, one copy is an $SU(2)_L$ singlet while the other, an $SU(2)_L$ doublet. We explain how this combination can pose a solution to the muon g-2 anomaly and also lead to non-zero neutrino masses. In addition, it is also shown that the parameter regions compliant with the two aforementioned issues can stabilise the electroweak vacuum till the Planck scale, something not possible within the Standard Model alone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا