Do you want to publish a course? Click here

Effects of vectorlike leptons on $hto 4ell$ and the connection to the muon g-2 anomaly

221   0   0.0 ( 0 )
 Added by Radovan Dermisek
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The mixing of new vectorlike leptons with leptons in the standard model can generate flavor violating couplings of $h$, $W$ and $Z$ between heavy and light leptons. Focusing on the couplings of the muon, the partial decay width of $hto e_4^pm mu^mp$, where $e_4$ is the new lepton, can be significant when this process is kinematically allowed. Subsequent decays $e_4^pm to Zmu^pm$ and $e_4^pm to W^pm u$ lead to the same final states as $h to ZZ^* to Z mu^+mu^-$ and $h to WW^* to W mu u$, thus possibly affecting measurements of these processes. We calculate $hto e_4 ell_i to Zell_iell_j$, where $ell_{i,j}$ are standard model leptons, including the possibility of off-shell decays, interference with $hto ZZ^* to Z ell_i ell_i$, and the mass effect of $ell_{i,j}$ which are important when the mass of $e_4$ is close to the mass of the Higgs boson. We derive constraints on masses and couplings of the heavy lepton from the measurement of $hto 4ell$. We focus on the couplings of the muon and discuss possible effects on $hto ZZ^*$ from the region of parameters that can explain the anomaly in the measurement of the muon g-2.



rate research

Read More

The deviation of the measured value of the muon anomalous magnetic moment from the standard model prediction can be completely explained by mixing of the muon with extra vectorlike leptons, L and E, near the electroweak scale. This mixing simultaneously contributes to the muon mass. We show that the correlation between contributions to the muon mass and muon g-2 is controlled by the mass of the neutrino originating from the doublet L. Positive correlation, simultaneously explaining both measured values, requires this mass below 200 GeV. The decay rate of the Higgs boson to muon pairs is modified and, in the region of the parameter space that can explain the muon anomalous magnetic moment within one standard deviation, it ranges from 0.5 to 24 times the standard model prediction. In the same scenario, $h to gamma gamma$ can be enhanced or lowered by ~50% from the standard model prediction. The explanation of the muon g-2 anomaly and predictions for $h to gamma gamma$ are not correlated since these are controlled by independent parameters. This scenario can be embedded in a model with three complete vectorlike families featuring gauge coupling unification, sufficiently stable proton, and the Higgs quartic coupling remaining positive all the way to the grand unification scale.
The Fermilab Muon $g-2$ collaboration recently announced the first result of measurement of the muon anomalous magnetic moment ($g-2$), which confirmed the previous result at the Brookhaven National Laboratory and thus the discrepancy with its Standard Model prediction. We revisit low-scale supersymmetric models that are naturally capable to solve the muon $g-2$ anomaly, focusing on two distinct scenarios: chargino-contribution dominated and pure-bino-contribution dominated scenarios. It is shown that the slepton pair-production searches have excluded broad parameter spaces for both two scenarios, but they are not closed yet. For the chargino-dominated scenario, the models with $m_{tilde{mu}_{rm L}}gtrsim m_{tilde{chi}^{pm}_1}$ are still widely allowed. For the bino-dominated scenario, we find that, although slightly non-trivial, the region with low $tan beta$ with heavy higgsinos is preferred. In the case of universal slepton masses, the low mass regions with $m_{tilde{mu}}lesssim 230$ GeV can explain the $g-2$ anomaly while satisfying the LHC constraints. Furthermore, we checked that the stau-bino coannihilation works properly to realize the bino thermal relic dark matter. We also investigate heavy staus case for the bino-dominated scenario, where the parameter region that can explain the muon $g-2$ anomaly is stretched to $m_{tilde{mu}}lesssim 1.3$ TeV.
98 - Wen Yin 2021
The long-standing muon $g-2$ anomaly has been confirmed recently at the Fermilab. The combined discrepancy from Fermilab and Brookhaven results shows a difference from the theory at a significance of 4.2 $sigma$. In addition, the LHC has updated the lower mass bound of a pure wino. In this letter, we study to what extent the $g-2$ can be explained in anomaly mediation scenarios, where the pure wino is the dominant dark matter component. To this end, we derive some model-independent constraints on the particle spectra and $g-2$. We find that the $g-2$ explanation at the 1$sigma$ level is driven into a corner if the higgsino threshold correction is suppressed. On the contrary, if the threshold correction is sizable, the $g-2$ can be explained. In the whole viable parameter region, the gluino mass is at most $2-4,$TeV, the bino mass is at most $2,$TeV, and the wino dark matter mass is at most $1-2,$TeV. If the muon $g-2$ anomaly is explained in the anomaly mediation scenarios, colliders and indirect search for the dark matter may find further pieces of evidence in the near future. Possible UV models for the large threshold corrections are discussed.
We show that a unified framework based on an $SU(2)_H$ horizontal symmetry which generates a naturally large neutrino transition magnetic moment and explains the XENON1T electron recoil excess also predicts a positive shift in the muon anomalous magnetic moment. This shift is of the right magnitude to be consistent with the Brookhaven measurement as well as the recent Fermilab measurement of the muon $g-2$. A relatively light neutral scalar from a Higgs doublet with mass near 100 GeV contributes to muon $g-2$, while its charged partner induces the neutrino magnetic moment. We analyze the collider tests of this framework and find that the HL-LHC can probe the entire parameter space of these models.
We construct models with minimal field content that can simultaneously explain the muon g-2 anomaly and give the correct dark matter relic abundance. These models fall into two general classes, whether or not the new fields couple to the Higgs. For the general structure of models without new Higgs couplings, we provide analytical expressions that only depend on the $SU(2)_L$ representation. These results allow to demonstrate that only few models in this class can simultaneously explain $(g-2)_mu$ and account for the relic abundance. The experimental constraints and perturbativity considerations exclude all such models, apart from a few fine-tuned regions in the parameter space, with new states in the few 100 GeV range. In the models with new Higgs couplings, the new states can be parametrically heavier by a factor $sqrt{1/y_mu}$, with $y_mu$ the muon Yukawa coupling, resulting in masses for the new states in the TeV regime. At present these models are not well constrained experimentally, which we illustrate on two representative examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا