No Arabic abstract
In this paper, we introduced our joint team SJTU-NICT s participation in the WMT 2020 machine translation shared task. In this shared task, we participated in four translation directions of three language pairs: English-Chinese, English-Polish on supervised machine translation track, German-Upper Sorbian on low-resource and unsupervised machine translation tracks. Based on different conditions of language pairs, we have experimented with diverse neural machine translation (NMT) techniques: document-enhanced NMT, XLM pre-trained language model enhanced NMT, bidirectional translation as a pre-training, reference language based UNMT, data-dependent gaussian prior objective, and BT-BLEU collaborative filtering self-training. We also used the TF-IDF algorithm to filter the training set to obtain a domain more similar set with the test set for finetuning. In our submissions, the primary systems won the first place on English to Chinese, Polish to English, and German to Upper Sorbian translation directions.
We participate in the WMT 2020 shared news translation task on Chinese to English. Our system is based on the Transformer (Vaswani et al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ data selection, several synthetic data generation approaches (i.e., back-translation, knowledge distillation, and iterative in-domain knowledge transfer), advanced finetuning approaches and self-bleu based model ensemble. Our constrained Chinese to English system achieves 36.9 case-sensitive BLEU score, which is the highest among all submissions.
This paper describes our VolcTrans system on WMT20 shared news translation task. We participated in 8 translation directions. Our basic systems are based on Transformer, with several variants (wider or deeper Transformers, dynamic convolutions). The final system includes text pre-process, data selection, synthetic data generation, advanced model ensemble, and multilingual pre-training.
Reinforcement Learning (RL) is a powerful framework to address the discrepancy between loss functions used during training and the final evaluation metrics to be used at test time. When applied to neural Machine Translation (MT), it minimises the mismatch between the cross-entropy loss and non-differentiable evaluation metrics like BLEU. However, the suitability of these metrics as reward function at training time is questionable: they tend to be sparse and biased towards the specific words used in the reference texts. We propose to address this problem by making models less reliant on such metrics in two ways: (a) with an entropy-regularised RL method that does not only maximise a reward function but also explore the action space to avoid peaky distributions; (b) with a novel RL method that explores a dynamic unsupervised reward function to balance between exploration and exploitation. We base our proposals on the Soft Actor-Critic (SAC) framework, adapting the off-policy maximum entropy model for language generation applications such as MT. We demonstrate that SAC with BLEU reward tends to overfit less to the training data and performs better on out-of-domain data. We also show that our dynamic unsupervised reward can lead to better translation of ambiguous words.
While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with 10 language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time. That is, research on multilingual UNMT has been limited. In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder, making use of multilingual data to improve UNMT for all language pairs. On the basis of the empirical findings, we propose two knowledge distillation methods to further enhance multilingual UNMT performance. Our experiments on a dataset with English translated to and from twelve other languages (including three language families and six language branches) show remarkable results, surpassing strong unsupervised individual baselines while achieving promising performance between non-English language pairs in zero-shot translation scenarios and alleviating poor performance in low-resource language pairs.