Do you want to publish a course? Click here

The Volctrans Machine Translation System for WMT20

195   0   0.0 ( 0 )
 Added by Xiao Pan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper describes our VolcTrans system on WMT20 shared news translation task. We participated in 8 translation directions. Our basic systems are based on Transformer, with several variants (wider or deeper Transformers, dynamic convolutions). The final system includes text pre-process, data selection, synthetic data generation, advanced model ensemble, and multilingual pre-training.



rate research

Read More

We participate in the WMT 2020 shared news translation task on Chinese to English. Our system is based on the Transformer (Vaswani et al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ data selection, several synthetic data generation approaches (i.e., back-translation, knowledge distillation, and iterative in-domain knowledge transfer), advanced finetuning approaches and self-bleu based model ensemble. Our constrained Chinese to English system achieves 36.9 case-sensitive BLEU score, which is the highest among all submissions.
This paper describes the systems submitted to IWSLT 2021 by the Volctrans team. We participate in the offline speech translation and text-to-text simultaneous translation tracks. For offline speech translation, our best end-to-end model achieves 8.1 BLEU improvements over the benchmark on the MuST-C test set and is even approaching the results of a strong cascade solution. For text-to-text simultaneous translation, we explore the best practice to optimize the wait-k model. As a result, our final submitted systems exceed the benchmark at around 7 BLEU on the same latency regime. We will publish our code and model to facilitate both future research works and industrial applications. This paper describes the systems submitted to IWSLT 2021 by the Volctrans team. We participate in the offline speech translation and text-to-text simultaneous translation tracks. For offline speech translation, our best end-to-end model achieves 7.9 BLEU improvements over the benchmark on the MuST-C test set and is even approaching the results of a strong cascade solution. For text-to-text simultaneous translation, we explore the best practice to optimize the wait-k model. As a result, our final submitted systems exceed the benchmark at around 7 BLEU on the same latency regime. We release our code and model at url{https://github.com/bytedance/neurst/tree/master/examples/iwslt21} to facilitate both future research works and industrial applications.
96 - Zuchao Li , Hai Zhao , Rui Wang 2020
In this paper, we introduced our joint team SJTU-NICT s participation in the WMT 2020 machine translation shared task. In this shared task, we participated in four translation directions of three language pairs: English-Chinese, English-Polish on supervised machine translation track, German-Upper Sorbian on low-resource and unsupervised machine translation tracks. Based on different conditions of language pairs, we have experimented with diverse neural machine translation (NMT) techniques: document-enhanced NMT, XLM pre-trained language model enhanced NMT, bidirectional translation as a pre-training, reference language based UNMT, data-dependent gaussian prior objective, and BT-BLEU collaborative filtering self-training. We also used the TF-IDF algorithm to filter the training set to obtain a domain more similar set with the test set for finetuning. In our submissions, the primary systems won the first place on English to Chinese, Polish to English, and German to Upper Sorbian translation directions.
This paper describes DiDi AI Labs submission to the WMT2020 news translation shared task. We participate in the translation direction of Chinese->English. In this direction, we use the Transformer as our baseline model, and integrate several techniques for model enhancement, including data filtering, data selection, back-translation, fine-tuning, model ensembling, and re-ranking. As a result, our submission achieves a BLEU score of $36.6$ in Chinese->English.
72 - Runxin Xu , Zhuo Zhi , Jun Cao 2020
In this paper, we describe our submissions to the WMT20 shared task on parallel corpus filtering and alignment for low-resource conditions. The task requires the participants to align potential parallel sentence pairs out of the given document pairs, and score them so that low-quality pairs can be filtered. Our system, Volctrans, is made of two modules, i.e., a mining module and a scoring module. Based on the word alignment model, the mining module adopts an iterative mining strategy to extract latent parallel sentences. In the scoring module, an XLM-based scorer provides scores, followed by reranking mechanisms and ensemble. Our submissions outperform the baseline by 3.x/2.x and 2.x/2.x for km-en and ps-en on From Scratch/Fine-Tune conditions, which is the highest among all submissions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا