Do you want to publish a course? Click here

Ultralow Threshold Polariton Condensate in a Monolayer Semiconductor Microcavity at Room Temperature

118   0   0.0 ( 0 )
 Added by Jiaxin Zhao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomically thin transition metal dichalcogenides possess valley dependent functionalities that are usually available only at crogenic temperatures, constrained by various valley depolarization scatterings. The formation of exciton polaritons by coherently superimposing excitons and microcavity photons potentially harnesses the valley polarized polariton polariton interactions for novel valleytronics devices. Robust EPs have been demonstrated at room temperature in TMDs microcavity, however, the coherent polariton lasing and condensation remain elusive. Herein, we demonstrate for the first time the realization of EP condensation in a TMD microcavity at room temperature. The continuous wave pumped EP condensation and lasing with ultralow thresholdsis evidenced by the macroscopic occupation of the ground state, that undergoes a nonlinear increase of the emission and a continuous blueshift, a build up of spatial coherence, and a detuning-controlled threshold. Our work presents a critically important step towards exploiting nonlinear polariton polariton interactions and polaritonic devices with valley functionality at room temperature.



rate research

Read More

Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments strongly rely on well-defined shaping the potential landscape of the Bosons, respectively Bosonic quasi-particles, and have been restricted to cryogenic, or even ultra-cold temperatures. On chip, the GaAs-based exciton-polariton platform emerged as a promising system to implement and study bosonic non-linear systems in lattices, yet demanding cryogenic temperatures. In our work, we discuss the first experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins as an excitonic gain material, providing ultra-stable Frenkel excitons. We directly take advantage of their soft nature by mechanically shaping them in the photonic one-dimensional lattice. We demonstrate controlled loading of the condensate in distinct orbital lattice modes of different symmetries, and finally explore, as an illustrative example, the formation of a gap solitonic mode, driven by the interplay of effective interaction and negative effective mass in our lattice. The observed phenomena in our open dissipative system are comprehensively scrutinized by a nonequilibrium model of polariton condensation. We believe, that this work is establishing the organic polariton platform as a serious contender to the well-established GaAs platform for a wide range of applications relying on coherent Bosons in lattices, given its unprecedented flexibility, cost effectiveness and operation temperature.
468 - Fei Chen , Hang Zhou , Hui Li 2021
Whispering gallery modes in a microwire are characterized by a nearly equidistant energy spectrum. In the strong exciton-photon coupling regime, this system represents a bosonic cascade: a ladder of discrete energy levels that sustains stimulated transitions between neighboring steps. In this work, by using femtosecond angle-resolved spectroscopic imaging technique, the ultrafast dynamics of polaritons in a bosonic cascade based on a one-dimensional ZnO whispering gallery microcavity is explicitly visualized. Clear ladder-form build-up process from higher to lower energy branches of the polariton condensates are observed, which are well reproduced by modeling using rate equations. Moreover, the polariton parametric scattering dynamics are distinguished on a timescale of hundreds of femtoseconds. Our understanding of the femtosecond condensation and scattering dynamics paves the way towards ultrafast coherent control of polaritons at room temperature, which will make it promising for high-speed all-optical integrated applications.
A method of determining the temperature of the nonradiative reservoir in a microcavity exciton-polariton system is developed. A general relation for the homogeneous polariton linewidth is theoretically derived and experimentally used in the method. In experiments with a GaAs microcavity under nonresonant pulsed excitation, the reservoir temperature dynamics is extracted from the polariton linewidth. Within the first nanosecond the reservoir temperature greatly exceeds the lattice temperature and determines the dynamics of the major processes in the system. It is shown that, for nonresonant pulsed excitation of GaAs microcavities, the polariton Bose-Einstein condensation is typically governed by polariton-phonon scattering, while interparticle scattering leads to condensate depopulation.
A cavity-polariton, formed due to the strong coupling between exciton and cavity mode, is one of the most promising composite bosons for realizing macroscopic spontaneous coherence at high temperature. Up to date, most of polariton quantum degeneracy experiments were conducted in the complicated two-dimensional (2D) planar microcavities. The role of dimensionality in coherent quantum degeneracy of a composite bosonic system of exciton polaritons remains mysterious. Here we report the first experimental observation of a one-dimensional (1D) polariton condensate in a ZnO microwire at room temperature. The massive occupation of the polariton ground state above a distinct pump power threshold is clearly demonstrated by using the angular resolved spectroscopy under non-resonant excitation. The power threshold is one order of magnitude lower than that of Mott transition. Furthermore, a well-defined far field emission pattern from the polariton condensate mode is observed, manifesting the coherence build-up in the condensed polariton system.
Gain and loss modulation are ubiquitous in nature. An exceptional point arises when both the eigenvectors and eigenvalues coalesce, which in a physical system can be achieved by engineering the gain and loss coefficients, leading to a wide variety of counter-intuitive phenomena. In this work we demonstrate the existence of an exceptional point in an exciton polariton condensate in a double-well potential. Remarkably, near the exceptional point, the polariton condensate localized in one potential well can be switched off by an additional optical excitation in the other well with very low (far below threshold) laser power which surprisingly induces additional loss into the system. Increasing the power of the additional laser leads to a situation in which gain dominates in both wells again, such that the polaritons re-condense with almost the same density in the two potential wells. Our results offer a simple way to optically manipulate the polariton lasing process in a double-well potential structure. Extending such configuration to complex potential well lattices offers exciting prospects to explore high-order exceptional points and non-Hermitian topological photonics in a non-equilibrium many-body system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا