No Arabic abstract
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments strongly rely on well-defined shaping the potential landscape of the Bosons, respectively Bosonic quasi-particles, and have been restricted to cryogenic, or even ultra-cold temperatures. On chip, the GaAs-based exciton-polariton platform emerged as a promising system to implement and study bosonic non-linear systems in lattices, yet demanding cryogenic temperatures. In our work, we discuss the first experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins as an excitonic gain material, providing ultra-stable Frenkel excitons. We directly take advantage of their soft nature by mechanically shaping them in the photonic one-dimensional lattice. We demonstrate controlled loading of the condensate in distinct orbital lattice modes of different symmetries, and finally explore, as an illustrative example, the formation of a gap solitonic mode, driven by the interplay of effective interaction and negative effective mass in our lattice. The observed phenomena in our open dissipative system are comprehensively scrutinized by a nonequilibrium model of polariton condensation. We believe, that this work is establishing the organic polariton platform as a serious contender to the well-established GaAs platform for a wide range of applications relying on coherent Bosons in lattices, given its unprecedented flexibility, cost effectiveness and operation temperature.
Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from non-trivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have shown to combine the on-chip benefits of optical systems with strong interactions, inherited form their matter character. Technologically significant semiconductor platforms, however, strictly require cryogenic temperatures for operability. In this paper, we demonstrate exciton-polariton lasing for topological defects emerging form the imprinted lattice structure at room temperature. We utilize a monomeric red fluorescent protein derived from DsRed of Discosoma sea anemones, hosting highly stable Frenkel excitons. Using a patterned mirror cavity, we tune the lattice potential landscape of a linear Su-Schrieffer-Heeger chain to design topological defects at domain boundaries and at the edge. In spectroscopic experiments, we unequivocally demonstrate polariton lasing from these topological defects. This progress promises to be a paradigm shift, paving the road to interacting Boson many-body physics at ambient conditions.
The strong light-matter coupling of a microcavity mode to tightly bound Frenkel excitons in organic materials emerged as a versatile, room-temperature compatible platform to study nonlinear many-particle physics and bosonic condensation. However, various aspects of the optical response of Frenkel excitons in this regime remained largely unexplored. Here, we utilize a hemispheric optical cavity filled with the fluorescent protein mCherry to address two important questions in the field of room-temperature polariton condensates. First, combining the high quality factor of the microcavity with a well-defined mode structure allows us to provide a definite answer whether temporal coherence in such systems can become competitive with their low-temperature counterparts. We observe highly monochromatic and coherent light beams emitted from the condensate, characterized by a coherence time greater than 150$,$ps, which exceeds the polariton lifetime by two orders of magnitude. Second, the high quality of our device allows to sensibly trace the emission energy of the condensate, and thus to establish a fundamental picture which quantitatively explains the core nonlinear processes yielding the characteristic density-dependent blueshift. We find that the energy shift of Frenkel exciton-polaritons is largely dominated by the reduction of the Rabi-splitting due to phase space filling effects, which is influenced by the redistribution of polaritons in the system. While our finding of highly coherent condensation at ambient conditions addresses the suitability of organic polaritonics regarding their utilization as highly coherent room temperature polariton lasers, shedding light on the non-linearity is of great benefit towards implementing non-linear devices, optical switches, and lattices based on exciton-polaritons at room temperature.
A cavity-polariton, formed due to the strong coupling between exciton and cavity mode, is one of the most promising composite bosons for realizing macroscopic spontaneous coherence at high temperature. Up to date, most of polariton quantum degeneracy experiments were conducted in the complicated two-dimensional (2D) planar microcavities. The role of dimensionality in coherent quantum degeneracy of a composite bosonic system of exciton polaritons remains mysterious. Here we report the first experimental observation of a one-dimensional (1D) polariton condensate in a ZnO microwire at room temperature. The massive occupation of the polariton ground state above a distinct pump power threshold is clearly demonstrated by using the angular resolved spectroscopy under non-resonant excitation. The power threshold is one order of magnitude lower than that of Mott transition. Furthermore, a well-defined far field emission pattern from the polariton condensate mode is observed, manifesting the coherence build-up in the condensed polariton system.
Engineering non-linear hybrid light-matter states in tailored optical lattices is a central research strategy for the simulation of complex Hamiltonians. Excitons in atomically thin crystals are an ideal active medium for such purposes, since they couple strongly with light and bear the potential to harness giant non-linearities and interactions while presenting a simple sample-processing and room temperature operability. We demonstrate lattice polaritons, based on an open, high-quality optical cavity, with an imprinted photonic lattice strongly coupled to excitons in a WS$_{2}$ monolayer. We experimentally observe the emergence of the canonical band-structure of particles in a one-dimensional lattice at room temperature, and demonstrate frequency reconfigurability over a spectral window exceeding 12 meV, as well as the systematic variation of the nearest neighbour coupling, reflected by a tuneability in the bandwidth of the p-band polaritons by 7 meV. The technology presented in this work is a critical demonstration towards reconfigurable photonic emulators operated with non-linear photonic fluids, offering a simple experimental implementation and working at ambient conditions.
We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and randomly adopts one of two elliptically polarized (up to 95% circularly-polarized) states with opposite handedness of polarization. The magnetized condensate remains stable for many seconds at 5 K, but at higher temperatures it can flip from one magnetic orientation to another. We optically address these states and demonstrate the inversion of the magnetic state by resonantly injecting 100-fold weaker pulses of opposite spin. Theoretically, these phenomena can be well described as spontaneous symmetry breaking of the spin degree of freedom induced by different loss rates of the linear polarizations.