Do you want to publish a course? Click here

Interface-induced field-like optical spin torque in a ferromagnet/heavy metal heterostructure

61   0   0.0 ( 0 )
 Added by Satoshi Iihama
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The manipulation of magnetization in a metallic ferromagnet by using optical helicity has been much attracted attention for future opto-spintronic devices. The optical helicity induced torques on the magnetization, {it optical spin torque}, have been observed in ferromagnetic thin films recently. However, the interfacial effect of the optical spin torque in ferromagnet/nonmagnetic heavy metal heterostructures have not been addressed so far, which are widely utilized to efficiently control magnetization via electrical means. Here, we studied optical spin torque vectors in the ferromagnet/nonmagnetic heavy metal heterostructures and observed that in-plane field-like optical spin torque was significantly increased with decreasing ferromagnetic layer thicknesses. The interfacial field-like optical spin torque was explained by the optical Rashba-Edelstein effect caused by the structural inversion symmetry breaking. This work will aid in the efficient optical manipulation of thin film nanomagnets using optical helicity.

rate research

Read More

Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics over time, therefore, it is limited to bipolar operation where a change in polarity of the applied current or field is required for bistable switching. The coherent rotation based oscillatory switching schemes cannot be applied to SOT because the SOT switching occurs through expansion of magnetic domains. Here, we experimentally achieve oscillatory switching in incoherent SOT process by controlling domain wall dynamics. We find that a large field-like component can dynamically influence the domain wall chirality which determines the direction of SOT switching. Consequently, under nanosecond current pulses, the magnetization switches alternatively between the two stable states. By utilizing this oscillatory switching behavior we demonstrate a unipolar deterministic SOT switching scheme by controlling the current pulse duration.
Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal processes of electric field-driven spin torque and magnetization dynamics-driven spin and charge flow. Both damping-like and field-like spin-orbit torques have been observed in the forward process of current-driven spin torque and damping-like inverse spin-orbit torque has been well-studied via spin pumping into heavy metal layers. Here we demonstrate that established microwave transmission spectroscopy of ferromagnet/normal metal bilayers under ferromagnetic resonance can be used to inductively detect the AC charge currents driven by the inverse spin-charge conversion processes. This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR) measurements. We show that in addition to the commonly-extracted spectroscopic information, VNA-FMR measurements can be used to quantify the magnitude and phase of all AC charge currents in the sample, including those due to spin pumping and spin-charge conversion. Our findings reveal that Ni$_{80}$Fe$_{20}$/Pt bilayers exhibit both damping-like and field-like inverse spin-orbit torques. While the magnitudes of both the damping-like and field-like inverse spin-orbit torque are of comparable scale to prior reported values for similar material systems, we observed a significant dependence of the damping-like magnitude on the order of deposition. This suggests interface quality plays an important role in the overall strength of the damping-like spin-to-charge conversion.
Recent experiments demonstrating large spin-transfer torques in topological insulator (TI)-ferromagnetic metal (FM) bilayers have generated a great deal of excitement due to their potential applications in spintronics. The source of the observed spin-transfer torque, however, remains unclear. This is because the large charge transfer from the FM to TI layer would prevent the Dirac cone at the interface from being anywhere near the Fermi level to contribute to the observed spin-transfer torque. Moreover, there is yet little understanding of the impact on the Dirac cone at the interface from the metallic bands overlapping in energy and momentum, where strong hybridization could take place. Here, we build a simple microscopic model and perform first-principles-based simulations for such a TI-FM heterostructure, considering the strong hybridization and charge transfer effects. We find that the original Dirac cone is destroyed by the hybridization as expected. Instead, we find a new interface state which we dub descendent state to form near the Fermi level due to the strong hybridization with the FM states at the same momentum. Such a `descendent state carries a sizable weight of the original Dirac interface state, and thus inherits the localization at the interface and the same Rashba-type spin-momentum locking. We propose that the `descendent state may be an important source of the experimentally observed large spin-transfer torque in the TI-FM heterostructure.
98 - Y. Fujita , Y. Miura , T. Sasaki 2021
We study spin-scattering asymmetry at the interface of two ferromagnets (FMs) based on a half-metallic Co$_{2}$Fe$_{0.4}$Mn$_{0.6}$Si (CFMS)/CoFe interface. First-principles ballistic transport calculations based on Landauer formula for (001)-CoFe/CFMS/CoFe indicate strong spin-dependent conductance at the CFMS/CoFe interface, suggesting large interface spin-scattering asymmetry coefficient ($gamma$). Fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin-valve (PSV) devices involving CoFe/CFMS/Ag/CFMS/CoFe structures exhibit an enhancement in magnetoresistance output owing to the formation of the CFMS/CoFe interface at room temperature (RT). This is well reproduced qualitatively by a simulation based on a generalized two-current series-resistor model with taking the presence of $gamma$ at the CFMS/CoFe interface, half-metallicity of CFMS, and combinations of terminated atoms at the interfaces in the CPP-GMR PSV structure. We show direct evidence for large $gamma$ at a half-metallic FM/FM interface and its impact on CPP-GMR effect even at RT.
Spin-orbit torques (SOT) allow the electrical control of magnetic states. Current-induced SOT switching of the perpendicular magnetization is of particular technological importance. The SOT consists of damping-like and field-like torques so that the efficient SOT switching requires to understand combined effects of the two torque-components. Previous quasi-static measurements have reported an increased switching probability with the width of current pulses, as predicted with considering the damping-like torque only. Here we report a decreased switching probability at longer pulse-widths, based on time-resolved measurements. Micromagnetic analysis reveals that this anomalous SOT switching results from domain wall reflections at sample edges. The domain wall reflection is found to strongly depend on the field-like torque and its relative sign to the damping-like torque. Our result demonstrates a key role of the field-like torque in the deterministic SOT switching and notifies the importance of sign correlation of the two torque-components, which may shed light on the SOT switching mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا