Do you want to publish a course? Click here

Excited-state dynamics of structurally characterized crystal of SnxSb1-x

110   0   0.0 ( 0 )
 Added by Veer Awana Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The topological behavior of heavy metal alloys opens a vast area for incredible research and future technology. Here, we extend our previous report about the superconducting properties of Sn0.4Sb0.6 along with the compositional variation of Sn and Sb in SnxSb1-x (with (X=0.5 and 0.6)) to study the detailed optical properties. Structural and morphological details of grown crystal are carried from the previous study. Further, the samples are excited by a pump of 2.61 eV with a broad probe of 0.77-1.54 eV in the NIR regime for transient reflectance ultrafast studies (TRUS) measurements. The differential reflectance profile shows an unprecedented negative magnitude, and the average power-dependent analysis of this negative trend has been analyzed. This article not only provides evidence of band filling phenomenon in the samples but also shows that with the variation of average power, there is a definite increase in the excited charge carriers, and thereby enhancing the band filling response. The estimated value of the bandgap between the band filled states and valence state is also determined from these studies. The nonlinear properties and bandgap analysis of the studied topological alloys and similar materials help in the advancement of various nonlinear optical applications.



rate research

Read More

115 - G. Q. Zhao , C. J. Lin , Z. Deng 2018
Recently a new type diluted magnetic semiconductor (BaK)(ZnMn)2As2 (BZA) with high Cure temperature (Tc) was discovered showing independent spin and charge doping mechanism. This makes BZA a promising material for spintronics devices. Here we report for the first time the successful growth of BZA single crystal. An Andreev reflection junction that can be used to evaluate spin polarization was fabricated based on the BZA single crystal, a 66% spin polarization of the BZA single crystal was hence obtained by Andreev reflection spectroscopy analysis.
We have developed the laser-diode-heated floating zone (LDFZ) method, in order to improve the broad and inhomogeneous light focusing in the conventional lamp-heated floating zone method, which often causes difficulties in the crystal growth especially for the incongruently melting materials. We have simulated the light focusing properties of the LDFZ method to make irradiated light homogeneous and restricted mostly to the molten zone. We have designed and assembled an LDFZ furnace, and have demonstrated how it works through actual crystal growth. The method is applicable to various kinds of materials, and enables stable and reproducible crystal growth even for the incongruently melting materials. We have succeeded in the crystal growth of representative incongruently melting materials such as BiFeO3 and (La,Ba)2CuO4, which are difficult to grow by the conventional method. Tolerance to the decentering of the sample and highly efficient heating are also established in the LDFZ method.
259 - J.H.T. Ransley 2003
Using an optimized bridge geometry we have been able to make accurate measurements of the properties of YBa2Cu3O7-delta grain boundaries above Tc. The results show a strong dependence of the change of resistance with temperature on grain boundary angle. Analysis of our results in the context of band-bending allows us to estimate the height of the potential barrier present at the grain boundary interface.
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions, forming discrete Dirac cones in three-dimensional momentum space. In addition to the gapless points (Weyl/Dirac nodes) in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by topologically protected surface state with Fermi arcs on their specific surface. The Weyl/Dirac semimetals have attracted much attention recently they provide a venue not only to explore unique quantum phenomena but also to show potential applications. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more experimental evidence and theoretical investigation are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide strong experimental evidence on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.
301 - J. Kajala , F. Massel , P. Torma 2011
We consider a two-component Fermi gas in the presence of spin imbalance, modeling the system in terms of a one-dimensional attractive Hubbard Hamiltonian initially in the presence of a confining trap potential. With the aid of the time-evolving block decimation method, we investigate the dynamics of the initial state when the trap is switched off. We show that the dynamics of a gas initially in the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state is decomposed into the independent expansion of two fluids, namely the paired and the unpaired particles. In particular, the expansion velocity of the unpaired cloud is shown to be directly related to the FFLO momentum. This provides an unambiguous signature of the FFLO state in a remarkably simple way.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا