Chirality in a helimagnetic structure is determined by the sense of magnetic moment rotation. We found that the chiral information did not disappear even after the phase transition to the high-temperature ferromagnetic phase in a helimagnet MnP. The 2nd harmonic resistivity $rho^{rm 2f}$, which reflects the breaking down of mirror symmetry, was found to be almost unchanged after heating the sample above the ferromagnetic transition temperature and cooling it back to the helimagnetic state. The application of a magnetic field along the easy axis in the ferromagnetic state quenched the chirality-induced $rho^{rm 2f}$. This indicates that the chirality memory effect originated from the ferromagnetic domain walls.
We consider a domain wall in the mesoscopic quasi-one-dimensional sample (wire or stripe) of weakly anisotropic two-sublattice antiferromagnet, and estimate the probability of tunneling between two domain wall states with different chirality. Topological effects forbid tunneling for the systems with half-integer spin S of magnetic atoms which consist of odd number of chains N. External magnetic field yields an additional contribution to the Berry phase, resulting in the appearance of two different tunnel splittings in any experimental setup involving a mixture of odd and even N, and in oscillating field dependence of the tunneling rate with the period proportional to 1/N.
Magnetic domain walls are topological solitons whose internal structure is set by competing energies which sculpt them. In common ferromagnets, domain walls are known to be of either Bloch or Neel types. Little is established in the case of Mn$_3$Sn, a triangular antiferromagnet with a large room-temperature anomalous Hall effect, where domain nucleation is triggered by a well-defined threshold magnetic field. Here, we show that the domain walls of this system generate an additional contribution to the Hall conductivity tensor and a transverse magnetization. The former is an electric field lying in the same plane with the magnetic field and electric current and therefore a planar Hall effect. We demonstrate that in-plane rotation of spins inside the domain wall would explain both observations and the clockwise or anticlockwise chirality of the walls depends on the history of the field orientation and can be controlled.
A novel doubly chiral magnetic order is found out in the structurally chiral langasite compound Ba$_3$NbFe$_3$Si$_2$O$_{14}$. The magnetic moments are distributed over planar frustrated triangular lattices of triangle units. On each of these they form the same triangular configuration. This ferro-chiral arrangement is helically modulated from plane to plane. Unpolarized neutron scattering on a single crystal associated with spherical neutron polarimetry proved that a single triangular chirality together with a single helicity is stabilized in an enantiopure crystal. A mean field analysis allows discerning the relevance on this selection of a twist in the plane to plane supersuperexchange paths.
A magnetic helix arises in chiral magnets with a wavelength set by the spin-orbit coupling. We show that the helimagnetic order is a nanoscale analog to liquid crystals, exhibiting topological structures and domain walls that are distinctly different from classical magnets. Using magnetic force microscopy and micromagnetic simulations, we demonstrate that - similar to cholesteric liquid crystals - three fundamental types of domain walls are realized in the helimagnet FeGe. We reveal the micromagnetic wall structure and show that they can carry a finite skyrmion charge, permitting coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new class of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.
We present a quantitative investigation of magnetic domain wall pinning in thin magnets with perpendicular anisotropy. A self-consistent description exploiting the universal features of the depinning and thermally activated sub-threshold creep regimes observed in the field driven domain wall velocity, is used to determine the effective pinning parameters controlling the domain wall dynamics: the effective height of pinning barriers, the depinning threshold, and the velocity at depinning. Within this framework, the analysis of results published in the literature allows for a quantitative comparison of pinning properties for a set of magnetic materials in a wide temperature range. On the basis of scaling arguments, the microscopic parameters controlling the pinning: the correlation length of pinning, the collectively pinned domain wall length (Larkin length) and the strength of pinning disorder, are estimated from the effective pinning and the micromagnetic parameters. The analysis of thermal effects reveals a crossover between different pinning length scales and strengths at low reduced temperature.