Do you want to publish a course? Click here

Data-driven Operation of the Resilient Electric Grid: A Case of COVID-19

75   0   0.0 ( 0 )
 Added by Hossein Noorazar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Electrical energy is a vital part of modern life, and expectations for grid resilience to allow a continuous and reliable energy supply has tremendously increased even during adverse events (e.g., Ukraine cyber-attack, Hurricane Maria). The global pandemic COVID-19 has raised the electric energy reliability risk due to potential workforce disruptions, supply chain interruptions, and increased possible cybersecurity threats. The pandemic introduces a significant degree of uncertainly to the grid operation in the presence of other extreme events like natural disasters, unprecedented outages, aging power grids, high proliferation of distributed generation, and cyber-attacks. This situation increases the need for measures for the resiliency of power grids to mitigate the impacts of the pandemic as well as simultaneous extreme events. Solutions to manage such an adverse scenario will be multi-fold: a) emergency planning and organizational support, b) following safety protocol, c) utilizing enhanced automation and sensing for situational awareness, and d) integration of advanced technologies and data points for ML-driven enhanced decision support. Enhanced digitalization and automation resulted in better network visibility at various levels, including generation, transmission, and distribution. These data or information can be utilized to take advantage of advanced machine learning techniques for automation and increased power grid resilience. In this paper, a) we review the impact of COVID-19 on power grid operations and actions taken by operators/organizations to minimize the impact of COVID-19, and b) we have presented the recently developed tool and concepts using natural language processing (NLP) in the domain of machine learning and artificial intelligence that can be used for increasing resiliency of power systems in normal and in extreme scenarios such as COVID-19 pandemics.



rate research

Read More

183 - Hailiang Liu , Xuping Tian 2020
We present a data-driven optimal control approach which integrates the reported partial data with the epidemic dynamics for COVID-19. We use a basic Susceptible-Exposed-Infectious-Recovered (SEIR) model, the model parameters are time-varying and learned from the data. This approach serves to forecast the evolution of the outbreak over a relatively short time period and provide scheduled controls of the epidemic. We provide efficient numerical algorithms based on a generalized Pontryagin Maximum Principle associated with the optimal control theory. Numerical experiments demonstrate the effective performance of the proposed model and its numerical approximations.
Epidemics are a serious public health threat, and the resources for mitigating their effects are typically limited. Decision-makers face challenges in forecasting the demand for these resources as prior information about the disease is often not available, the behaviour of the disease can periodically change (either naturally or as a result of public health policies) and can differ by geographical region. In this work, we discuss a model that is suitable for short-term real-time supply and demand forecasting during emerging outbreaks without having to rely on demographic information. We propose a data-driven mixed-integer programming (MIP) resource allocation model that assigns available resources to maximize a notion of fairness among the resource-demanding entities. Numerical results from applying our MIP model to a COVID-19 Convalescent Plasma (CCP) case study suggest that our approach can help balance the supply and demand of limited products such as CCP and minimize the unmet demand ratios of the demand entities.
Forecasting influenza in a timely manner aids health organizations and policymakers in adequate preparation and decision making. However, effective influenza forecasting still remains a challenge despite increasing research interest. It is even more challenging amidst the COVID pandemic, when the influenza-like illness (ILI) counts are affected by various factors such as symptomatic similarities with COVID-19 and shift in healthcare seeking patterns of the general population. Under the current pandemic, historical influenza models carry valuable expertise about the disease dynamics but face difficulties adapting. Therefore, we propose CALI-Net, a neural transfer learning architecture which allows us to steer a historical disease forecasting model to new scenarios where flu and COVID co-exist. Our framework enables this adaptation by automatically learning when it should emphasize learning from COVID-related signals and when it should learn from the historical model. Thus, we exploit representations learned from historical ILI data as well as the limited COVID-related signals. Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic. In addition, we show that success in our primary goal, adaptation, does not sacrifice overall performance as compared with state-of-the-art influenza forecasting approaches.
145 - Carlo R. Contaldi 2020
Timely estimation of the current value for COVID-19 reproduction factor $R$ has become a key aim of efforts to inform management strategies. $R$ is an important metric used by policy-makers in setting mitigation levels and is also important for accurate modelling of epidemic progression. This brief paper introduces a method for estimating $R$ from biased case testing data. Using testing data, rather than hospitalisation or death data, provides a much earlier metric along the symptomatic progression scale. This can be hugely important when fighting the exponential nature of an epidemic. We develop a practical estimator and apply it to Scottish case testing data to infer a current (20 May 2020) $R$ value of $0.74$ with $95%$ confidence interval $[0.48 - 0.86]$.
To mitigate the spread of COVID-19 pandemic, decision-makers and public authorities have announced various non-pharmaceutical policies. Analyzing the causal impact of these policies in reducing the spread of COVID-19 is important for future policy-making. The main challenge here is the existence of unobserved confounders (e.g., vigilance of residents). Besides, as the confounders may be time-varying during COVID-19 (e.g., vigilance of residents changes in the course of the pandemic), it is even more difficult to capture them. In this paper, we study the problem of assessing the causal effects of different COVID-19 related policies on the outbreak dynamics in different counties at any given time period. To this end, we integrate data about different COVID-19 related policies (treatment) and outbreak dynamics (outcome) for different United States counties over time and analyze them with respect to variables that can infer the confounders, including the covariates of different counties, their relational information and historical information. Based on these data, we develop a neural network based causal effect estimation framework which leverages above information in observational data and learns the representations of time-varying (unobserved) confounders. In this way, it enables us to quantify the causal impact of policies at different granularities, ranging from a category of policies with a certain goal to a specific policy type in this category. Besides, experimental results also indicate the effectiveness of our proposed framework in capturing the confounders for quantifying the causal impact of different policies. More specifically, compared with several baseline methods, our framework captures the outbreak dynamics more accurately, and our assessment of policies is more consistent with existing epidemiological studies of COVID-19.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا