No Arabic abstract
Although online education has become a viable and major component of higher education in many fields, its employment in engineering disciplines has been limited. COVID-19 pandemic compelled the global and abrupt conversion of conventional face-to-face instruction to the online format. The negative impact of such sudden change is undeniable. Urgent and careful planning is needed to mitigate pandemic negative effects on engineering education, especially for vulnerable, disadvantaged, and underrepresented students who have to deal with additional challenges (e.g. digital equity gap). To enhance engineering online instruction during the pandemic era, we conducted an observational study at California State University, Long Beach (a minority-serving institution). 110 faculty and 627 students from six engineering departments participated in our surveys and answered quantitative and qualitative questions to highlight the challenges they experienced during the online instruction in Spring 2020. In this work, we present the results of these surveys in detail and propose solutions to address the identified issues including logistical, technical, learning/teaching challenges, assessment methods, and hands-on training. As the pandemic continues, sharing these results with other educators can help with more effective planning and choice of best practices to improve the online engineering education during COVID-19 and beyond.
Since March 2020, companies nationwide have started work from home (WFH) due to the rapid increase of confirmed COVID-19 cases in an attempt to help prevent the coronavirus from spreading and rescue the economy from the pandemic. Many organizations have conducted surveys to understand peoples opinions towards WFH. However, the findings are limited due to small sample size and the dynamic topics over time. This study aims to understand the U.S. public opinions on working from home during the COVID-19 pandemic. We conduct a large-scale social media study using Twitter data to portrait different groups who have positive/negative opinions about WFH. We perform an ordinary least squares regression to investigate the relationship between the sentiment about WFH and user characteristics including gender, age, ethnicity, median household income, and population density. To better understand public opinion, we use latent Dirichlet allocation to extract topics and discover how tweet contents relate to peoples attitudes. These findings provide evidence that sentiment about WFH varies across user characteristics. Furthermore, the content analysis sheds light on the nuanced differences in sentiment and reveals disparities relate to WFH.
We analyse the distribution and the flows between different types of employment (self-employment, temporary, and permanent), unemployment, education, and other types of inactivity, with particular focus on the duration of the school-to-work transition (STWT). The aim is to assess the impact of the COVID-19 pandemic in Italy on the careers of individuals aged 15-34. We find that the pandemic worsened an already concerning situation of higher unemployment and inactivity rates and significantly longer STWT duration compared to other EU countries, particularly for females and residents in the South of Italy. In the midst of the pandemic, individuals aged 20-29 were less in (permanent and temporary) employment and more in the NLFET (Neither in the Labour Force nor in Education or Training) state, particularly females and non Italian citizens. We also provide evidence of an increased propensity to return to schooling, but most importantly of a substantial prolongation of the STWT duration towards permanent employment, mostly for males and non Italian citizens. Our contribution lies in providing a rigorous estimation and analysis of the impact of COVID-19 on the carriers of young individuals in Italy, which has not yet been explored in the literature.
Due to the COVID-19 pandemic, there was an urgent need to move to online teaching and develop innovations to guarantee the Student Learning Outcomes (SLOs) are being fulfilled. The contributions of this paper are two-fold: the effects of an experimented teaching strategy, i.e. multi-course project-based learning (MPL) approach, are presented followed with online assessment techniques investigation for senior level electrical engineering (EE) courses at Qatar University. The course project of the senior course was designed in such a way that it helps in simultaneously attaining the objectives of the senior and capstone courses, that the students were taking at the same time. It is known that the MPL approach enhances the critical thinking capacity of students which is also a major outcome of Education for Sustainable Development (ESD). The developed project ensures the fulfillment of a series of SLOs, that are concentrated on soft engineering and project management skills. The difficulties of adopting the MPL method for the senior level courses are in aligning the project towards fulfilling the learning outcomes of every individual course. The study also provides the students feedback on online assessment techniques incorporated with the MPL, due to online teaching during COVID-19 pandemic. In order to provide a benchmark and to highlight the obtained results, the innovative teaching approaches were compared to conventional methods taught on the same senior course in a previous semester. Based on the feedback from teachers and students from previously conducted case study it was believed that the MPL approach would support the students. With the statistical analysis (Chi-square, two-tailed T statistics and hypothesis testing using z-test) it can be concluded that the MPL and online assessment actually help to achieve better attainment of the SLOs, even during a pandemic situation.
The COVID-19 pandemic has disrupted human activities, leading to unprecedented decreases in both global energy demand and GHG emissions. Yet a little known that there is also a low carbon shift of the global energy system in 2020. Here, using the near-real-time data on energy-related GHG emissions from 30 countries (about 70% of global power generation), we show that the pandemic caused an unprecedented de-carbonization of global power system, representing by a dramatic decrease in the carbon intensity of power sector that reached a historical low of 414.9 tCO2eq/GWh in 2020. Moreover, the share of energy derived from renewable and low-carbon sources (nuclear, hydro-energy, wind, solar, geothermal, and biomass) exceeded that from coal and oil for the first time in history in May of 2020. The decrease in global net energy demand (-1.3% in the first half of 2020 relative to the average of the period in 2016-2019) masks a large down-regulation of fossil-fuel-burning power plants supply (-6.1%) coincident with a surge of low-carbon sources (+6.2%). Concomitant changes in the diurnal cycle of electricity demand also favored low-carbon generators, including a flattening of the morning ramp, a lower midday peak, and delays in both the morning and midday load peaks in most countries. However, emission intensities in the power sector have since rebounded in many countries, and a key question for climate mitigation is thus to what extent countries can achieve and maintain lower, pandemic-level carbon intensities of electricity as part of a green recovery.
As the COVID-19 pandemic is disrupting life worldwide, related online communities are popping up. In particular, two new communities, /r/China flu and /r/Coronavirus, emerged on Reddit and have been dedicated to COVID- related discussions from the very beginning of this pandemic. With /r/Coronavirus promoted as the official community on Reddit, it remains an open question how users choose between these two highly-related communities. In this paper, we characterize user trajectories in these two communities from the beginning of COVID-19 to the end of September 2020. We show that new users of /r/China flu and /r/Coronavirus were similar from January to March. After that, their differences steadily increase, evidenced by both language distance and membership prediction, as the pandemic continues to unfold. Furthermore, users who started at /r/China flu from January to March were more likely to leave, while those who started in later months tend to remain highly loyal. To understand this difference, we develop a movement analysis framework to understand membership changes in these two communities and identify a significant proportion of /r/China flu members (around 50%) that moved to /r/Coronavirus in February. This movement turns out to be highly predictable based on other subreddits that users were previously active in. Our work demonstrates how two highly-related communities emerge and develop their own identity in a crisis, and highlights the important role of existing communities in understanding such an emergence.