No Arabic abstract
We analyse the distribution and the flows between different types of employment (self-employment, temporary, and permanent), unemployment, education, and other types of inactivity, with particular focus on the duration of the school-to-work transition (STWT). The aim is to assess the impact of the COVID-19 pandemic in Italy on the careers of individuals aged 15-34. We find that the pandemic worsened an already concerning situation of higher unemployment and inactivity rates and significantly longer STWT duration compared to other EU countries, particularly for females and residents in the South of Italy. In the midst of the pandemic, individuals aged 20-29 were less in (permanent and temporary) employment and more in the NLFET (Neither in the Labour Force nor in Education or Training) state, particularly females and non Italian citizens. We also provide evidence of an increased propensity to return to schooling, but most importantly of a substantial prolongation of the STWT duration towards permanent employment, mostly for males and non Italian citizens. Our contribution lies in providing a rigorous estimation and analysis of the impact of COVID-19 on the carriers of young individuals in Italy, which has not yet been explored in the literature.
Because of the ongoing Covid-19 crisis, supply chain management performance seems to be struggling. The purpose of this paper is to examine a variety of critical factors related to the application of contingency theory to determine its feasibility in preventing future supply chain bottlenecks. The study reviewed current online news reports, previous research on contingency theory, as well as strategic and structural contingency theories. This paper also systematically reviewed several global supply chain management and strategic decision-making studies in an effort to promote a new strategy. The findings indicated that the need for mass production of products within the United States, as well as within trading partners, is necessary to prevent additional Covid-19 related supply chain gaps. The paper noted that in many instances, the United States has become dependent on foreign products, where the prevention of future supply chain gaps requires the United States restore its manufacturing prowess.
We provide quantitative predictions of first order supply and demand shocks for the U.S. economy associated with the COVID-19 pandemic at the level of individual occupations and industries. To analyze the supply shock, we classify industries as essential or non-essential and construct a Remote Labor Index, which measures the ability of different occupations to work from home. Demand shocks are based on a study of the likely effect of a severe influenza epidemic developed by the US Congressional Budget Office. Compared to the pre-COVID period, these shocks would threaten around 22% of the US economys GDP, jeopardise 24% of jobs and reduce total wage income by 17%. At the industry level, sectors such as transport are likely to have output constrained by demand shocks, while sectors relating to manufacturing, mining and services are more likely to be constrained by supply shocks. Entertainment, restaurants and tourism face large supply and demand shocks. At the occupation level, we show that high-wage occupations are relatively immune from adverse supply and demand-side shocks, while low-wage occupations are much more vulnerable. We should emphasize that our results are only first-order shocks -- we expect them to be substantially amplified by feedback effects in the production network.
Natural and anthropogenic disasters frequently affect both the supply and demand side of an economy. A striking recent example is the Covid-19 pandemic which has created severe disruptions to economic output in most countries. These direct shocks to supply and demand will propagate downstream and upstream through production networks. Given the exogenous shocks, we derive a lower bound on total shock propagation. We find that even in this best case scenario network effects substantially amplify the initial shocks. To obtain more realistic model predictions, we study the propagation of shocks bottom-up by imposing different rationing rules on industries if they are not able to satisfy incoming demand. Our results show that economic impacts depend strongly on the emergence of input bottlenecks, making the rationing assumption a key variable in predicting adverse economic impacts. We further establish that the magnitude of initial shocks and network density heavily influence model predictions.
We propose a general methodology to measure labour market dynamics, inspired by the search and matching framework, based on the estimate of the transition rates between labour market states. We show how to estimate instantaneous transition rates starting from discrete time observations provided in longitudinal datasets, allowing for any number of states. We illustrate the potential of such methodology using Italian labour market data. First, we decompose the unemployment rate fluctuations into inflow and outflow driven components; then, we evaluate the impact of the implementation of a labour market reform, which substantially changed the regulations of temporary contracts.
The article analyzes the populations assessment of their own health and attitude to a healthy lifestyle in the context of distribution by age groups. Of particular interest is the presence of transformations taking into account the complex epidemiological situation, the increase in the incidence of coronavirus infection in the population (the peak of the incidence came during the period of selective observation in 2020). The article assesses the closeness of the relationship between the respondents belonging to a particular socio-demographic group and their social well-being during the period of self-isolation, quarantine or other restrictions imposed during the coronavirus pandemic in 2020. To solve this problem, the demographic and socio-economic characteristics of respondents are presented, the distribution of responses according to the survey results is estimated and the most significant factor characteristics are selected. The distributions of respondents responses are presented for the selected questions. To determine the closeness of the relationship between the respondents answers to the question and their gender or age distribution, the coefficients of mutual conjugacy and rank correlation coefficients were calculated and analyzed. The ultimate goal of the analytical component of this study is to determine the social well-being of the Russian population during the pandemic on the basis of sample survey data. As a result of the analysis of changes for the period 2019-2020, the assessment of the closeness of communication revealed the parameters that form differences (gender, wealth, territory of residence).