Do you want to publish a course? Click here

Randomized tests for high-dimensional regression: A more efficient and powerful solution

68   0   0.0 ( 0 )
 Added by Yue Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We investigate the problem of testing the global null in the high-dimensional regression models when the feature dimension $p$ grows proportionally to the number of observations $n$. Despite a number of prior work studying this problem, whether there exists a test that is model-agnostic, efficient to compute and enjoys high power, still remains unsettled. In this paper, we answer this question in the affirmative by leveraging the random projection techniques, and propose a testing procedure that blends the classical $F$-test with a random projection step. When combined with a systematic choice of the projection dimension, the proposed procedure is proved to be minimax optimal and, meanwhile, reduces the computation and data storage requirements. We illustrate our results in various scenarios when the underlying feature matrix exhibits an intrinsic lower dimensional structure (such as approximate block structure or has exponential/polynomial eigen-decay), and it turns out that the proposed test achieves sharp adaptive rates. Our theoretical findings are further validated by comparisons to other state-of-the-art tests on the synthetic data.



rate research

Read More

120 - HaiYing Wang 2018
In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. 2018 Both asymptotic results and numerical results show that the new estimator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling rate, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. The proposed approach requires to use a pilot estimator to correct biases of un-weighted estimators. We further show that even if the pilot estimator is inconsistent, the resulting estimators are still consistent and asymptotically normal if the model is correctly specified.
155 - Song Xi Chen , Bin Guo 2014
We consider testing regression coefficients in high dimensional generalized linear models. An investigation of the test of Goeman et al. (2011) is conducted, which reveals that if the inverse of the link function is unbounded, the high dimensionality in the covariates can impose adverse impacts on the power of the test. We propose a test formation which can avoid the adverse impact of the high dimensionality. When the inverse of the link function is bounded such as the logistic or probit regression, the proposed test is as good as Goeman et al. (2011)s test. The proposed tests provide p-values for testing significance for gene-sets as demonstrated in a case study on an acute lymphoblastic leukemia dataset.
Among the most popular variable selection procedures in high-dimensional regression, Lasso provides a solution path to rank the variables and determines a cut-off position on the path to select variables and estimate coefficients. In this paper, we consider variable selection from a new perspective motivated by the frequently occurred phenomenon that relevant variables are not completely distinguishable from noise variables on the solution path. We propose to characterize the positions of the first noise variable and the last relevant variable on the path. We then develop a new variable selection procedure to control over-selection of the noise variables ranking after the last relevant variable, and, at the same time, retain a high proportion of relevant variables ranking before the first noise variable. Our procedure utilizes the recently developed covariance test statistic and Q statistic in post-selection inference. In numerical examples, our method compares favorably with other existing methods in selection accuracy and the ability to interpret its results.
With the availability of high dimensional genetic biomarkers, it is of interest to identify heterogeneous effects of these predictors on patients survival, along with proper statistical inference. Censored quantile regression has emerged as a powerful tool for detecting heterogeneous effects of covariates on survival outcomes. To our knowledge, there is little work available to draw inference on the effects of high dimensional predictors for censored quantile regression. This paper proposes a novel procedure to draw inference on all predictors within the framework of global censored quantile regression, which investigates covariate-response associations over an interval of quantile levels, instead of a few discrete values. The proposed estimator combines a sequence of low dimensional model estimates that are based on multi-sample splittings and variable selection. We show that, under some regularity conditions, the estimator is consistent and asymptotically follows a Gaussian process indexed by the quantile level. Simulation studies indicate that our procedure can properly quantify the uncertainty of the estimates in high dimensional settings. We apply our method to analyze the heterogeneous effects of SNPs residing in lung cancer pathways on patients survival, using the Boston Lung Cancer Survival Cohort, a cancer epidemiology study on the molecular mechanism of lung cancer.
64 - Faming Liang , Jingnan Xue , 2020
This paper proposes an innovative method for constructing confidence intervals and assessing p-values in statistical inference for high-dimensional linear models. The proposed method has successfully broken the high-dimensional inference problem into a series of low-dimensional inference problems: For each regression coefficient $beta_i$, the confidence interval and $p$-value are computed by regressing on a subset of variables selected according to the conditional independence relations between the corresponding variable $X_i$ and other variables. Since the subset of variables forms a Markov neighborhood of $X_i$ in the Markov network formed by all the variables $X_1,X_2,ldots,X_p$, the proposed method is coined as Markov neighborhood regression. The proposed method is tested on high-dimensional linear, logistic and Cox regression. The numerical results indicate that the proposed method significantly outperforms the existing ones. Based on the Markov neighborhood regression, a method of learning causal structures for high-dimensional linear models is proposed and applied to identification of drug sensitive genes and cancer driver genes. The idea of using conditional independence relations for dimension reduction is general and potentially can be extended to other high-dimensional or big data problems as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا