Do you want to publish a course? Click here

More Efficient Estimation for Logistic Regression with Optimal Subsample

121   0   0.0 ( 0 )
 Added by HaiYing Wang
 Publication date 2018
and research's language is English
 Authors HaiYing Wang




Ask ChatGPT about the research

In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. 2018 Both asymptotic results and numerical results show that the new estimator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling rate, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. The proposed approach requires to use a pilot estimator to correct biases of un-weighted estimators. We further show that even if the pilot estimator is inconsistent, the resulting estimators are still consistent and asymptotically normal if the model is correctly specified.

rate research

Read More

101 - Moo K. Chung 2020
For random field theory based multiple comparison corrections In brain imaging, it is often necessary to compute the distribution of the supremum of a random field. Unfortunately, computing the distribution of the supremum of the random field is not easy and requires satisfying many distributional assumptions that may not be true in real data. Thus, there is a need to come up with a different framework that does not use the traditional statistical hypothesis testing paradigm that requires to compute p-values. With this as a motivation, we can use a different approach called the logistic regression that does not require computing the p-value and still be able to localize the regions of brain network differences. Unlike other discriminant and classification techniques that tried to classify preselected feature vectors, the method here does not require any preselected feature vectors and performs the classification at each edge level.
The cost of both generalized least squares (GLS) and Gibbs sampling in a crossed random effects model can easily grow faster than $N^{3/2}$ for $N$ observations. Ghosh et al. (2020) develop a backfitting algorithm that reduces the cost to $O(N)$. Here we extend that method to a generalized linear mixed model for logistic regression. We use backfitting within an iteratively reweighted penalized least square algorithm. The specific approach is a version of penalized quasi-likelihood due to Schall (1991). A straightforward version of Schalls algorithm would also cost more than $N^{3/2}$ because it requires the trace of the inverse of a large matrix. We approximate that quantity at cost $O(N)$ and prove that this substitution makes an asymptotically negligible difference. Our backfitting algorithm also collapses the fixed effect with one random effect at a time in a way that is analogous to the collapsed Gibbs sampler of Papaspiliopoulos et al. (2020). We use a symmetric operator that facilitates efficient covariance computation. We illustrate our method on a real dataset from Stitch Fix. By properly accounting for crossed random effects we show that a naive logistic regression could underestimate sampling variances by several hundred fold.
67 - Yue Li , Ilmun Kim , Yuting Wei 2020
We investigate the problem of testing the global null in the high-dimensional regression models when the feature dimension $p$ grows proportionally to the number of observations $n$. Despite a number of prior work studying this problem, whether there exists a test that is model-agnostic, efficient to compute and enjoys high power, still remains unsettled. In this paper, we answer this question in the affirmative by leveraging the random projection techniques, and propose a testing procedure that blends the classical $F$-test with a random projection step. When combined with a systematic choice of the projection dimension, the proposed procedure is proved to be minimax optimal and, meanwhile, reduces the computation and data storage requirements. We illustrate our results in various scenarios when the underlying feature matrix exhibits an intrinsic lower dimensional structure (such as approximate block structure or has exponential/polynomial eigen-decay), and it turns out that the proposed test achieves sharp adaptive rates. Our theoretical findings are further validated by comparisons to other state-of-the-art tests on the synthetic data.
As a competitive alternative to least squares regression, quantile regression is popular in analyzing heterogenous data. For quantile regression model specified for one single quantile level $tau$, major difficulties of semiparametric efficient estimation are the unavailability of a parametric efficient score and the conditional density estimation. In this paper, with the help of the least favorable submodel technique, we first derive the semiparametric efficient scores for linear quantile regression models that are assumed for a single quantile level, multiple quantile levels and all the quantile levels in $(0,1)$ respectively. Our main discovery is a one-step (nearly) semiparametric efficient estimation for the regression coefficients of the quantile regression models assumed for multiple quantile levels, which has several advantages: it could be regarded as an optimal way to pool information across multiple/other quantiles for efficiency gain; it is computationally feasible and easy to implement, as the initial estimator is easily available; due to the nature of quantile regression models under investigation, the conditional density estimation is straightforward by plugging in an initial estimator. The resulting estimator is proved to achieve the corresponding semiparametric efficiency lower bound under regularity conditions. Numerical studies including simulations and an example of birth weight of children confirms that the proposed estimator leads to higher efficiency compared with the Koenker-Bassett quantile regression estimator for all quantiles of interest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا