Do you want to publish a course? Click here

Absence of spin-boson quantum phase transition for transmon qubits

65   0   0.0 ( 0 )
 Added by Th\\'eo S\\'epulcre
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconducting circuits are currently developed as a versatile platform for the exploration of many-body physics, both at the analog and digital levels. Their building blocks are often idealized as two-level qubits, drawing powerful analogies to quantum spin models. For a charge qubit that is capacitively coupled to a transmission line, this analogy leads to the celebrated spin-boson description of quantum dissipation. We put here into evidence a failure of the two-level paradigm for realistic superconducting devices, due to electrostatic constraints which limit the maximum strength of dissipation. These prevent the occurence of the spin-boson quantum phase transition for transmons, even up to relatively large non-linearities. A different picture for the many-body ground state describing strongly dissipative transmons is proposed, showing unusual zero point fluctuations.



rate research

Read More

Half a century after its discovery, the Josephson junction has become the most important nonlinear quantum electronic component at our disposal. It has helped reshape the SI system around quantum effects and is used in scores of quantum devices. By itself, the use of Josephson junctions in the volt metrology seems to imply an exquisite understanding of the component in every aspect. Yet, surprisingly, there have been long-standing subtle issues regarding the modeling of the interaction of a junction with its electromagnetic environment. Here, we find that a Josephson junction connected to a resistor does not become insulating beyond a given value of the resistance due to a dissipative quantum phase transition, as is commonly believed. Our work clarifies how this key quantum component behaves in the presence of a dissipative environment and provides a comprehensive and consistent picture, notably regarding the treatment of its phase.
144 - K. Serniak , M. Hays , G. de Lange 2018
Non-equilibrium quasiparticle excitations degrade the performance of a variety of superconducting circuits. Understanding the energy distribution of these quasiparticles will yield insight into their generation mechanisms, the limitations they impose on superconducting devices, and how to efficiently mitigate quasiparticle-induced qubit decoherence. To probe this energy distribution, we systematically correlate qubit relaxation and excitation with charge-parity switches in an offset-charge-sensitive transmon qubit, and find that quasiparticle-induced excitation events are the dominant mechanism behind the residual excited-state population in our samples. By itself, the observed quasiparticle distribution would limit $T_1$ to $approx200~mumathrm{s}$, which indicates that quasiparticle loss in our devices is on equal footing with all other loss mechanisms. Furthermore, the measured rate of quasiparticle-induced excitation events is greater than that of relaxation events, which signifies that the quasiparticles are more energetic than would be predicted from a thermal distribution describing their apparent density.
We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field Ising model with long-range interactions ($propto 1/r^alpha$ with distance $r$), for finite chains and also directly in the thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those values of $alpha$ for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted with respect to the equilibrium one, and the shift is found to depend on $alpha$ as well as on the quench parameters.
136 - J.H. Jefferson , A. Ramsak , 2005
A weakly bound electron in a semiconductor quantum wire is shown to become entangled with an itinerant electron via the coulomb interaction. The degree of entanglement and its variation with energy of the injected electron, may be tuned by choice of spin and initial momentum. Full entanglement is achieved close to energies where there are spin-dependent resonances. Possible realisations of related device structures are discussed.
We introduce a new class of primitive building blocks for realizing quantum logic elements based on nanoscale magnetization textures called skyrmions. In a skyrmion qubit, information is stored in the quantum degree of helicity, and the logical states can be adjusted by electric and magnetic fields, offering a rich operation regime with high anharmonicity. By exploring a large parameter space, we propose two skyrmion qubit variants depending on their quantized state. We discuss appropriate microwave pulses required to generate single-qubit gates for quantum computing, and skyrmion multiqubit schemes for a scalable architecture with tailored couplings. Scalability, controllability by microwave fields, operation time scales, and readout by nonvolatile techniques converge to make the skyrmion qubit highly attractive as a logical element of a quantum processor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا