Do you want to publish a course? Click here

Analytic representation of all planar two-loop five-point Master Integrals with one off-shell leg

94   0   0.0 ( 0 )
 Added by Costas Papadopoulos
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We present analytic expressions in terms of polylogarithmic functions for all three families of planar two-loop five-point Master Integrals with one off-shell leg. The calculation is based on the Simplified Differential Equations approach. The results are relevant to the study of many $2to 3$ scattering processes of interest at the LHC, especially for the leading-color $W+2$ jets production.



rate research

Read More

We describe the calculation of all planar master integrals that are needed for the computation of NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. The most complicated representatives of integrals in this class are the two-loop four-point functions where two external lines are on the light-cone and two other external lines have different invariant masses. We compute these and other relevant integrals analytically using differential equations in external kinematic variables and express our results in terms of Goncharov polylogarithms. The case of two equal off-shellnesses, recently considered in Ref. [1], appears as a particular case of our general solution.
131 - S. Abreu , H. Ita , F. Moriello 2020
We present the computation of a full set of planar five-point two-loop master integrals with one external mass. These integrals are an important ingredient for two-loop scattering amplitudes for two-jet-associated W-boson production at leading color in QCD. We provide a set of pure integrals together with differential equations in canonical form. We obtain analytic differential equations efficiently from numerical samples over finite fields, fitting an ansatz built from symbol letters. The symbol alphabet itself is constructed from cut differential equations and we find that it can be written in a remarkably compact form. We comment on the analytic properties of the integrals and confirm the extended Steinmann relations, which govern the double discontinuities of Feynman integrals, to all orders in $epsilon$. We solve the differential equations in terms of generalized power series on single-parameter contours in the space of Mandelstam invariants. This form of the solution trivializes the analytic continuation and the integrals can be evaluated in all kinematic regions with arbitrary numerical precision.
We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic results for the Laurent expansion of conventional integrals in the parameter of dimensional regularization through to terms of weight eight.
We present the analytic form of all leading-color two-loop five-parton helicity amplitudes in QCD. The results are analytically reconstructed from exact numerical evaluations over finite fields. Combining a judicious choice of variables with a new approach to the treatment of particle states in $D$ dimensions for the numerical evaluation of amplitudes, we obtain the analytic expressions with a modest computational effort. Their systematic simplification using multivariate partial-fraction decomposition leads to a particularly compact form. Our results provide all two-loop amplitudes required for the calculation of next-to-next-to-leading order QCD corrections to the production of three jets at hadron colliders in the leading-color approximation.
We present the analytic form of the two-loop five-gluon scattering amplitudes in QCD for a complete set of independent helicity configurations of external gluons. These include the first analytic results for five-point two-loop amplitudes relevant for the computation of next-to-next-to-leading-order QCD corrections at hadron colliders. The results were obtained by reconstructing analytic expressions from numerical evaluations. The complexity of the computation is reduced by exploiting physical and analytical properties of the amplitudes, employing a minimal basis of so-called pentagon functions that have recently been classified.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا